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ARTICLES 
Archimedean Quadrature Redux 

L ARR Y W. CU S I CK 
Ca l i forn i a  State U n ivers i ty, Fresno 

Fresno, CA 93740 
l a rryc ® csufresno.edu 

Archimedes' use of Eudoxos '  method of exhaustion to determine the area bounded 
by a parabolic arc and a line segment was a crowning achievement in Greek mathe
matics. The promise of the method, so apparent to us now, seems to have died with 
Archimedes, only to rise again in different form some 1900 years later with the mod
em calculus .  Archimedes ' result though is  not just about computing an area. It is  about 
comparing a parabolic area with a related triangular area. That is, there is a geometric 
content in the comparison that is interesting in its own right. In recognition of this, 
there have been several generalizations discovered more recently that highlight the 
geometry using methods of modem analysis ([1], [2], [ 4], [6], [7], and [14]) . 

In this short article we would like to make the case that Archimedes' area compar
isons deserve more attention, not so much because of his methods, but rather because 
of the interesting geometric content of the comparisons and the new questions they 
suggest. We feel that there are more results to be had, and present a few here with 
some speculation on further research directions. 

Hi story 

Eudoxos of Cnidos (408-355 BC, in modem day Turkey) is generally credited with 
the discovery of the so-called method of exhaustion for determining the volumes of a 
pyramid and cone [9]. The ancient Greeks were fond of comparisons between volumes. 
For example, Eudoxos showed that the volume of a pyramid, respectively a cone, was 
one-third of the volume of the prism, respectively the cylinder, with like base and 
height. Although Eudoxos did not have the modem apparatus of limits, his technique 
amounted to approximating the volume by many simpler figures whose volumes are 
understood and essentially passing to a limit. 

The apex of the method of exhaustion comes with Archimedes of Syracuse (287-
212 Be). Archimedes deftly used the method to prove several area and volume (circles 
and spheres) comparisons ([5], [8], [9], [13]) . One might argue that parabolic curves 
are the natural next step. And a lesser mathematician of the time may have passed 
given the difficulty and apparent lack of obvious applications. Archimedes, however, 
solved the area problem for parabolas in his two related theorems ( 1) the quadrature of 
the parabola and the (2) squaring of the parabola. Both theorems compare a parabolic 
area to that of related triangle areas and can be found in his Quadrature of the Parabola 
and The Method. 

The setting for Archimedes '  theorems is a region in the plane bounded by a straight 
line segment and a parabolic arc, meeting at respective points P and Q (FIGURE 1) .  
In  his  quadrature theorem, Archimedes locates the point R on the parabolic arc that is 

83 
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a maximum distance, measured perpendicularly, from the line segment P Q and calls 
this point the vertex of the parabolic arc. ( The tangent line to the parabolic arc at the 
vertex R is parallel to PQ.) Quadrature states that the area bounded by the parabolic 
arc and the line segment P Q is equal to 1 of the area of !::. P Q R. 

Q 

p 

Figure 1 Archimedes' Quadrature and Squaring of the Parabola 

For his squaring of the parabola, Archimedes compares the area bounded by the 
parabolic arc and P Q to that of the so-called Archimedes triangle, !::. P Q R' where R' is 
the intersection point of the two tangent lines to the parabola at P and Q respectively. 
He then goes on to prove that the parabolic area is � of the area enclosed by this 
triangle. 

Archimedes' methods for proving his theorems relied on several properties of the 
parabola that are not common knowledge today. ( For full details of the proofs, see [5, 
pp. 239-242] and [13, pp. 5 1-62].) But we do have the powerful tools of analysis that 
can allow us to go further. 

Archimedean quadrature and squaring for analytic plane curves 

The context for our generalization will be analytic plane curves. A curve C will be 
called analytic of order n at a point R E C if there is a coordinate system at R with the 
two respective axes tangent and normal to C at R so that C is the graph of an analytic 
function 

where Cn ;:j:. 0. For our purposes, n will always be an even positive number. In the 
language of [3, p. 17], the curve C has n-fold contact with its tangent line at R. 

Note that a point R on a curve C is  of order 2 precisely when the curvature of C is 
non-zero at R ( because the curvature function is given by 

And consequently, every point on a parabolic arc is of order 2. 
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Let TRC denote the tangent line to C at R .  We will consider the family of triangles 

f::. P Q R for which P and Q are on C, where R lies between P and Q on C, and P Q  
is parallel to TRC. This situation can be pictured as FIGURE 1. Let A denote the area 
bounded by the curve and the segment P Q (the shaded area in FIGURE 1) and T the 
area of f::. P R Q . Archimedes ' quadrature of the parabola states that A/  T = 4/3 if C 
is a parabolic arc . While we would not expect his theorem to be true for other curves, 
we could ask if his theorem holds "in the limit" for analytic curves. We find that the 
answer is yes with some additional consideration in the case of zero curvature. The 
following generalization was proved in the case n = 1 in [6, Theorem 1]. 

THEOREM 1. (GENERALIZED ARCHIMEDEAN QUADRATURE) Suppose C is an 
analytic plane curve and R E C is a point of order 2n, with n 2: 1, and that A and 
T are as described in the previous paragraph, then 

A 4n 
lim -- --- , 

PQ-->O T 2n + 1 
PQIITRC 

where the limit is taken over points P,  Q E C that are on opposite sides of R and P Q 
is parallel to the tangent line TRC. 

Proof By assumption, C is the graph of f(x)  = c2nx2n + C2n+1x2n+l + · · · with 
c2n =I= 0. In this coordinate system, R = (0 , 0) , P = (a , f (a) )  and Q = (b, f (b) ) ,  
a < 0 < b, and f(a) = f(b) . (The last point is because the line P Q  is assumed to 
be parallel to the tangent line to C at R which is the horizontal axis in our coordinate 
system.)  We may also assume f(x)  > 0 for x =1= 0. By the inverse function theorem, 
we may write b = y(a) for some function y. (See FIGURE 2.) 

y =f(x) 

a R 

Figure 2 General ized Arc h i medean Quadrature 

We will need to know how to compute y1(a) later in the proof, and this is also 
provided by the inverse function theorem: 

1 f1(a) 
y (a) = 

f1( y(a) )  

The area bounded by  C and P Q i s  equal to 

A = f(a) (b - a) - 1b f(x) dx . 

The area enclosed by f::. P Q R is 

1 T = 2 f(a) (b - a ) .  

(1) 

(2) 
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Thus, the ratio AfT is 

A 
= 2 

f (a) (b - a) - J: f(x) dx 
T f (a) (b - a) ( J: f (x)  dx ) = 2 - 2 

f (a) (b - a) · (3) 

Letting b = y(a) ,  noting that f ( y(a)) = f (a) and using L'Hospital 's rule along with 
the Fundamental Theorem of Calculus, we get 

. t f (x)  dx . r(a) f (x) dx 
hm a = hm ---"-"

a
,__ ___ _ 

a-+o- (b - a)f (a) a->o- f (a) ( y(a) - a) 

= lim 
f (a) ( y' (a) - 1) 

a->o- f' (a) ( y(a) - a) + f (a) ( y' (a) - 1) 
. I 

= hm . 
a->O- f'(a)(y(a)-a) + 1 

f(a)(y'(a)-!) 

Now focusing on the denominator term, we see that 

t m = hm 1. f'(a) ( y(a) - a) . ( 2nc2na2n- ! + · · • ) ( y(a) - a ) 
a->O- j (a) ( y' (a) - 1) a->O- C2na2n + · · · y' (a) - 1 

= lim 
( 2nc2na2n + · · • ) (-Y-=�a_J_-_1_) . 

a->o- C2na2n + · · · y' (a) - 1 

(4) 

(5) 

The first term in the product (5) is easily seen to approach 2n . As for the second term, 
we first compute using L'Hospital 's rule. 

And by formula (1), 
I. y(a) 1' ' ( ) tm-- = tmy a .  

a->O- a a->O-

. . f' (a) 
hm y' (a) = hm ---

a->o- a->O- f' ( y(a)) 

. 2nc2na2n- ! + · · · 

= hm -::-------:---,-;:-----:--
a->O- 2nc2n Y (a)2n- ! + · · · 

I. a ( ) 2n- 1 
= t m -

a->0- y(a) ( 1 ) 2n- 1 
= lim -

a->o- y' (a) 

(6) 

(7) 

(8) 

(9) 

Upon equating the first and last term in the above string of equalities (6-9), we obtain 
(lima ..... o- y' (a) ) 2n = 1. But y(a) is clearly a decreasing function of a for a < 0, so 

1. y (a) 1' ' ( ) 1 tm-- = tmy a = - , 
a->O- a a->O-
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Substituting this into the product (5), gives us 

lim 
f' (a) ( y(a) - a) 

= 2n . 
a-+o- f(a) ( y' (a) - 1 )  

This can now be substituted into the fraction ( 4) to get 

. t f (x) dx 1 
hm a = ---. 

a-+o- (b - a)f (a) 2n + 1 

87 

( 1 0) 

Finally, we have the last piece to substitute into the ratio (3),  completing the proof. 

A 2 
lim - = 2 - ---

a---+o- T 2n + 1 

4n 

2n + 1 
• 

If 2n = 2, we see that the ratio in Theorem 1 tends to 4/3 . So it would appear that 
there is not some other curve for which the ratios are a constant value other than 4/3, 
except possibly at points of order larger than 2 .  In fact, this can happen. If C is the 
graph of f(x)  = x2n and R = (0, 0) , then it is easy to check that A /Tis constantly 
4n/ (2n + 1 )  for P Q  parallel to TRC. Also, the necessity of the condition P Q I ITRC 
in the limit becomes apparent in the example f (x) = x2 • We leave it for the reader to 
verify that the limit would not exist without this extra condition. 

Archimedes ' squaring of the parabola can be generalized in a similar way. Using 
the same hypotheses as in Theorem 1 ,  let R' be the intersection of the two tangents 
lines to C at P and Q respectively. (See FIGURE 3 . )  

Y =f(x) 

Figure 3 General ized Arch i medean Squar ing  

Let f be the area enclosed by 1::::. P Q R' . Using the same notation as in the previous 
proof, we have 

A A T 

T T T 
( 1 1 )  

It is easy to derive 

- f' (a)f' (b) (b - a)2 
T = -=---,--:-':..___---:----cc---

2(/' (a) - f' (b) ) 
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And so using formulas ( 1 )  and ( 1 0),  

l im '!; = l im 
f (a) (f' (a) - f' (b)) 

a---+o- T a---+o- f' (a)f' (b) (b - a) 

= lim 
f (a) (f' (a) - f' ( y (a)) )  

a---+O- f'(a)f' ( y(a)) ( y(a) - a) 

= lim 
f (a) ( y' (a) - 1 )  

a---+o- f'(a) ( y(a) - a) 
1 

2n 
( 1 2) 

Putting this together with Theorem 1 and ( 1 1  ) , we get the generalization to Archimedes' 
squaring of the parabola. 

THEOREM 2 .  (GENERALIZED ARCIMEDEAN SQUARING) Given the hypotheses 
of Theorem 1 and the definition ofT as the area enclosed by b.. P Q R', 

A 2 
lim -=- = --, 

PQ->0 T 2n + 1 
PQIITRC 

where the limit is taken over pairs of points P,  Q E C, on opposite sides of R E C and 
such that P Q II TRC. 

It is necessary in the limit that P Q II TRC for otherwise the limit may not exist. 
Also, just as in quadrature, the ratio AfT is constantly 2/ (2n + 1 )  if C is the graph of 
f (x)  = x2n . 

The two tr iang le theorem 

There is another area fact about parabolas that can be gleaned from Archimedes' The
orem. In FIGURE 4, the lines P R' , Q R' and Q' P' are all tangent to the parabolic arc 
at P ,  Q and R respectively. There is no assumption about R other than it lies between 
P and Q on the arc . 

We will now show how Archimedes could have used his squaring of the parabola 
to prove 

_
A

_
r

_
e

_
a

_
b..

_
P
_

Q
_
R 

_ _ 2 
Area b..P ' Q' R' -

· ( 1 3) 

A simplified notation will help in the proof. For the parabolic arc and associated 
tangent l ines pictured in FIGURE 5, (XY) and [XY] will denote the indicated areas. 

According to Archimedes ' squaring of the parabola, (XY) is two-thirds of the area 
of b..XYZ, and so (XY) = 2 [XY] . Thus 

Area b.. P Q R ( P Q) - (P R) - ( QR) ------ = ---------------
Area b.. P' Q' R' [P Q] - [PR] - [ Q R] 

2 ([P Q] - [ P R] - [ Q R])  = 
[P Q] - [ P  R] - [ Q R ]  

= 2.  
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Figure 4 Two Triangle Theorem 

Figure 5 Definitions of (XY) and [XY] 

89 

So the question is, to what extent does equation 13 transfer to analytic plane curves? 
The answer is given by the next theorem. The theorem will refer to the same named 
points P, Q, R, P', Q', R' used above ( see FIGURE 4) on an analytic plane curve C. 
We will also let T = Area t::. P Q R and T' = Area t::. P' Q' R' . 

THEOREM 3 .  ( TWO TRIANGLE THEOREM) Referring to the previo us paragraph, 
if R E C is a po int of o rder 2, then 

lim !..._ = 2, PQ->0 T' 

where the limit is taken over pairs of po ints P, Q E C o n o ppo site sides of R. If R E C 
is of o rder 2n, n > 1, then 
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where the limit is taken over po ints P, Q e C that are o n  o ppo site sides of R and P Q 
is parallel to the tangent line TRC. 

Before we set about on the proof of the Two Triangle Theorem, a few remarks are 
in order. The additional hypotheses in the second part of the theorem, PQIITRC in 
the limit, is necessary, for otherwise the limit may not exist. Also, just as before, if 
C is the graph of f(x) = x2n and PQIITRC, then it is readily verified that T j T' = 
2nj(2n- 1)2 • 

Proof of the Two Triangle Theo rem. We will prove the second assertion first. Our 
starting point will be the proof of Theorem I, and we will free I y use the notation and 
definitions from that proof. It is fairly straightforward to derive the area enclosed by 
triangle D.P' R' Q', assuming f(a) = f(b) ( you may use FIGURE 6 with PQ tilted so 
that it is parallel to the horizontal axis), 

T' = 
(/(a)(/'(b)-/'(a))+ f'(a)f'(b)(b-a))2 

2/'(a)/'(b) (/'(a)-/'(b)) 

Using this, along with formula (2), we get 

T f(a)(f'(a)- f'(b))f'(a)f'(b)(b-a) 
T' 

= 
(f(a)(f'(b)-/'(a))+ f'(a)f'(b)(b-a))2 

( 14) 

( 15) 

If we let X = f(a)(f'(a)- f'(b)) and Y = f'(a)f'(b)(b-a), and use the fact 
f(a) = /(b), then 

T XY 

T'
=

(-X+Y)2 

Figure 6 Proof of the Two Triangle Theorem 

( 16) 
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But 

X f (a) (f' (a) - f' (b)) 
= ::........:...-'.......:.:C........:..-'-----=--'----'-

y f' (a) f' (b) (b - a) 
T 

= f 
1 

� -
2n 

by formula ( 1 2) .  Substituting this into ( 1 6) proves the second part of the theorem, 

T 2n 
lim-= . 

a ..... o- T' (2n - 1 )2 
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The proof of the first part will require a few preliminaries. We assume f (x)  = 
c2x2 + · · · and c2 > 0. (See FIGURE 6.) 

Since we may no longer assume f (a) and f (b) are the same, we must use different 
formulas for T and T', derived from the standard vector formula for triangle area 

1 ......... ......... 
Area of 6.ABC = 211 AB x A C  11. 

Both formulas are now straightforward calculations, 

T = 
bf(a) - af (b) -=----

2
---=--

and 

So 

T' = 
(f (a) f' (b) - f' (a)f (b) + f' (a) f' (b) (b - a)) 2 

2f' (a)f' (b) (f' (a) - f' (b)) 

T f'(a)f' (b) (bf (a) - af (b) ) (f'(a) - f' (b)) 
= ------------------------------� T' (f (a)f' (b) - f' (a)f (b) + f' (a)f' (b) (b - a))2 · 

To complete the proof, we will need four factorizations : 

1 .  f' (a) = aqJ,(a) where lirna ..... 0qJ,(a) = 2cz. 
2. f' (a) - f' (b) = (a - b)qJz (a , b) where lima,b->0 qJ2 (a , b) = 2c2 • 
3 .  bf (a)  - af(b) = ab(a - b)qJ3 (a ,  b) where lima,b->O (/J3 (a ,  b) = Cz. 
4. f' (a) f (b) - f (a)f' (b) = ab (b - a)qJ4 (a ,  b) where lima,b->O qJ4 (a ,  b) = 2c� . 

Once we establish these factorizations the proof is complete, 

I. T 1. aqJ, (a)bqJ, (b)ab(a - b)qJ3 (a , b) (a - b)qJ2 (a ,  b) 
lm -= lm �--'--'-----'--'---'-----'----'------'-----'---'---�� a,b->0 T' a,b->0 (ab(b - a)qJ4 (a , b) - aqJ 1 (a)bqJ 1 (b) (b - a))2 

= lim 
qJ1 (a)qJ 1 (b)qJ3 (a ,  b)qJz (a ,  �) 

a,b->0 (qJ4 (a ,  b) - qJ 1 (a)qJ J (b) ) 

8ci 
= -----=------=-

(2c� - 4cD2 

= 2. 

( 1 7) 
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We will leave the proofs of the first three factorizations to the reader. They are 
straightforward infinite series manipulations. The fourth is a little more difficult and is 
given below. We start with 

Then, 

00 
f (x) = L ckxk . 

00 00 

k=2 

f' (a) f (b) - f (a)f' (b) = L L kckcm(ak-ibm - ambk-i) 
k=2 m=2 

00 00 
= ab I:: I:: kckcm cak-2bm-i - am-i bk-2) 

k=2 m=2 

= ab ( L kckcmam-ibm- 1 (ak-m- 1 - bk-m-i) 
m-i<k-2 

+ L kckcmak-2bk-2 (bm-k+i - am-k+l)) 
k-2<m-i 

= ab(b - a)cp4 (a ,  b) , 

where we have defined cp4 (a , b) in the previous line. Then, 

lim cp4 (a ,  b) = cp4 (0 ,  0) 
a,h--+0 

and the only non-zero contribution to cp4 (0, 0) is from the second sum when k = 2 and 
m = 2, giving 

lim cp4 (a ,  b) = 2c� . 
a,b--+0 

This completes the proof of the Two Triangle Theorem. • 

New directions 

Archimedes ' squaring of the parabola inspired the Two Triangle Theorem, which in 
turn bears a certain kinship to the so-called osculating circle of differential geometry. 
Let us recall the definition of the osculating circle. For any three points P, Q and R 
on the curve C, we construct the circumcircle of L.P Q R .  The osculating circle, 0, to 

C at R is the limit circle of these circumcircles as P and Q approach R along C and 
on opposite sides of R .  (See FIGURE 7 . )  If the curvature to C at R, K, is non-zero then 
the osculating circle exists and its radius is equal to 1 I K, see [1 1 ,  p. 39] . 

Now it is perhaps natural to construct the circumcircles of the triangles L. P' Q' R'. 
(See FIGURE 8 . )  As P Q  � 0 and P and Q are on C and on opposite sides of R ,  it 
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Figure 7 Construct ing  the Osc u l at i ng C i rc l e  

R' 

Figure 8 C i rc u m c i rc l e  of !':,.P'Q'R' 

R 
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Figure 9 The osc u l at ing  c i rc l e  0 ( large) and derived osc u l at i n g  c i rc l e  O' (sma l l )  

appears that w e  also get a sequence o f  circles that converges to a circle 0' that we 
might call the derived osculating circle . The two limit circles at R, 0 and 0', are 
pictured in FIGURE 9. The larger circle is the osculating circle 0. 

If we let r and r ' be the respective radii of 0 and 0', then computer experiments 
suggest 

1. r 
lm - = 4, 

PQ-->0 r ' 
( 1 8) 

so long as the point R is of order 2. However, if R is a point of order 2n with n > 1 ,  
then limit 1 8  may not exist, so we restrict the limit: 

r 4n2 
lim - = --- , 

PQ--.o r' 2n - 1 
PQIITRC 

( 1 9) 

where the limit is taken over pairs of points P, Q E C on opposite sides of R and so 
that PQJITRC. 

There is clearly something of a general nature going on here. We suggest the fol
lowing setting. 
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By a triangle functio n we will mean a real valued function T defined on triangles in 
the plane so that T(t:.I) = T(t:.2) if !::.1 is congruent to !::.2• The area and circumradius 
are two examples of triangle functions. The general question is this. Using the points 
P, Q, R, P', Q', R' as we have been doing, R is a point of order 2, and assuming T is 
a triangle function, what is the value, if it exists, of 

L = lim 
T(t:.PQR) 

? PQ ..... o T(t:.P'Q'R') 

And similarly, what about the limit 

L - I. T(t:.PQR) 
Im 11- ..!_Q ..... o T(t:.P'Q'R') PQIITRC 

if the order of R is 2n (n > 1)? 

Figure 1 0  T = T(t::..PQR) and T' = T(t::..P'Q'R') 

Some more analysis and computer experiments suggest there is no simple general 
answer to this question. Here are some results to ponder. 

1. As we saw earlier, ifT(t:.) =area( !::.), then L = 2 and L11 = 2nj(2n- 1)2• 

2. Experimentally, T(t:.) =perimeter( !::.), then L = 2 and L11 = 2nj(2n- 1). 

3. But if T(t:.) = c + -r(t:.), where cis a fixed non-zero number and -r is either area 
or perimeter , then L = L 11 = 1. 

4. And as we saw in the limits 18 and 19, if T(t:.) = circumradius(t:.), then L = 4 
and L11 = 4n2 j(2n- 1). But ifT(t:.) = c + circumradius(t:.) where cis a constant, 
then L = (4Kc + 4)j(4Kc + 1) where K is the curvature to Cat R. On the other 
hand, L11 = 4n2 j(2n- 1) even if c ¥= 0. 

5. If T(t:.) = inradius(t:.), then computer experiments suggest L = 1 and L11 = 
1/(2n - 1). 

6. Also experimentally, ifT(t:.) is the cube root of the product of the three side lengths 
oft:., then L = 2 and L11 = 2nj(2n - 1). 

Eureka, anyone? 

Acknowledgment. I would like to thank the anonymous referees for their insightful and helpful suggestions that 
greatly improved the exposition of the ideas presented in this article. 
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In this article, we will construct three infinite decimals from the last nonzero digits of 
nn , Fn (the Fibonacci numbers), and n!, respectively, and we will show that all three are 
transcendental . Along the way, we will learn a bit about the history of transcendental 
numbers, discuss two major theorems in the field, and pose some questions for future 
research. Let's begin by recalling what it means for a number to be transcendental . 

DEFINITION. For a a complex number, we say a is algebraic if it is the root of 
a polynomial with integer coefficients .  If no such polynomial exists, we say that a is 
transcendental. 

Early mathematicians, of course, were ignorant of this distinction. Indeed, the 
Pythagoreans of ancient Greece believed that everything in the universe could be mea
sured by whole numbers and their ratios. It must have come as quite a shock when 
Hippasus (fifth century BC) first demonstrated that certain ratios, such as the ratio be
tween the diagonal and the side of a square, were not the ratios of two whole numbers. 
Legend has it that angry Pythagoreans threw Hippasus into the sea for his heresy [9], 
but the idea of irrational numbers lived on. Indeed, our word "irrational" dates back 
to the Greek word apprrro� (arretos), meaning "unspeakable", perhaps reflecting the 
Greeks ' disgust of such messy objects as ../2;1 [9], [16]. 

We now skip ahead to seventeenth-century Europe. With the introduction of algebra 
and modem notation, it finally became possible to ask if there existed numbers that 
were not roots of polynomials . James Gregory [3],[8] appears to have been the first to 
attempt to prove that JT and e were not algebraic, an ambitious (and ultimately fruitless) 
goal given that it was not yet known if they were even irrational (their irrationality was 
finally shown in the eighteenth century by Lambert and Euler, respectively) .  

It  was not until the nineteenth century that we see the first proofs of the existence of 
transcendental numbers. Liouville was the first to do so, with the specially-constructed 
number 

00 1 
L = '"' -, = 0. 1 10001000000000000000001 . . .  L... 1Qn · n= l  

The numbers n and e were shown to be transcendental by the later part of  the century 
by Lindemann and Hermite, respectively. Lindemann's proof finally put to rest the old 
problem of squaring the circle, first studied by the Greeks over two millenia earlier. 
Lindemann later reported [12, p. 246] that Kronecker said to him (probably in jest, and 
perhaps alluding to the ancient Greeks' distaste for irrational numbers), "Of what use is 
your beautiful investigation of n ?  Why study such problems since irrational numbers 
do not exist?" Some have seen this as a demonstration that Kronecker believed only 
in the existence of integers (recall also his famous quote "God created the integers, all 
else is the work of man"), but it is clear from his work that this is not the case. For 
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a summary of the controversy over Kronecker's words, see the article by Edwards [5, 
Essay 5 .5]. 

We note that even in the twenty-first century there are many open questions about 
transcendental numbers. It's not known if �(3) = 1 + � + � + ;b- + ···is transcen
dental, although Apery did prove that it is irrational [14]. As for the Euler constant 
y = limn--->oo 'L7=1 f - In n , we do not yet know if it is even irrational, let alone 
transcendental . For a further discussion of recent work on transcendental numbers, 
Ribenboim in [13] provides an English summary of a 1 983 historical overview by 
Waldschmidt [17]. See also Ribenboim's extensive bibliography in [13, Chapter 1 0] .  

Two Modern Theorems 

It is possible to prove that certain numbers (such as rr and e) are transcendental by 
assuming them to be algebraic and then working towards a contradiction. Such proofs 
are fairly complicated and involve a lot of auxiliary polynomials [7], [2]. Fortunately, 
there exist several different characterizations of transcendental numbers that will prove 
to be much easier to work with. This first theorem is the result of the work of three 
mathematicians over the first half of the twentieth century; it is restated slightly for 
convenience. 

THEOREM 1. (THUE, S IEGEL, ROTH)  For a algebraic and E > 0, there exist only 
finitely many rational numbers pI q such that 

la - !!... 1 < _

1 
. 

q q2+E 

Thus, if we can show that for some fixed E > 0 there are infinitely many such num
bers pI q that satisfy the above inequality, then a must be transcendental . In contrast 
to Thue-Siegel-Roth, consider the following fairly trivial result from Diophantine ap
proximation [7], [11]: if we have a rational and E > 0 then there exist only finitely 
many rational numbers pI q such that 

Note also that both these results are best possible in terms of the exponents. That is, if 
we replace the epsilons with zeros, then there would actually be infinitely many plq's 
(found by continued fractions) satisfying the first inequality and infinitely many plq's 
(for any q, take p = LaqJ ) for the second inequality. 

Our second theorem comes from an article [1] just published in 2004, and it is 
an extremely useful result. The following presentation is translated from the original 
French and is simplified for convenience. 

THEOREM 2. (ADAMCZEWSKI ,  BUGEAUD, LUCA) Let a be irrational, and sup
pose there exist two sequences { Un }, { Vn } of finite words on {0, 1, . . .  9} and a real 
number x > 1 such that 

( 1 )  For everyn 2: 1, the wordUn v: is a prefixfora, 

(2) The set (\�::t�1 is bounded, 

(3) The set I Vn I is strictly increasing. 

Then, a is transcendental. 
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A few comments and definitions are in order. Recall that a finite word W is simply 
a collection of digits, such as 411 or 314159. In saying that a word W is a prefix for a 
number a we mean that a begins with the digits from W. By I WI we mean the number 
of digits in W. For x an integer, then wx is simply the word WW · · · W (repeated 
X times), while if X is not integral We define Wx as being WlxJ followed by the first 
f(x - LxJ)  · I Wll elements of W. In particular, if W is 411, then wu would be 41141. 
Finally, the original statement and proof of this theorem in [1] is slightly more general 
in that it holds for a expressed in any base. 

Both of these theorems give us new ways of identifying transcendental numbers. 
The Thue-Siegel-Roth theorem requires us to find extremely close rational approx
imations, while the Adamczewski-Bugeaud-Luca theorem relies on a pattern in the 
digits .  Let us now move on to our three transcendental numbers and see how we can 
apply these two theorems. 

Forming numbers from the digits of nn 

We begin by looking at the pattern formed from the last (i .e. unit) digit of nn . Since 

11 =[I], 
then if we take the last digit of each number and form a decimal, we get 

0 .  1476563690 1636567490 
1476563690 1636567490 . . .  

This looks a lot like a repeating decimal, and indeed it is not hard to prove (see [6] ) 
that 

nn = (n + 20kt+20k mod 10 
which allows us to conclude that we have a rational number with period 20 equal to 
(1476563690 1636567490 ) I (9999999999 9999999999) .  Since rational numbers 
are by definition not transcendental, we need to modify our construction to produce a 
more interesting decimal. 

With this in mind, let us now construct a new decimal number A = O.d1 d2d3 • • •  dn . . .  
such that the nth digit dn of A is the last nonzero digit of nn ; that is, 

A= 0 .  1476563691 1636567496 
1476563699 1636567496 

The reader will note that this new number A differs from the previous number at 
the tenth decimal place, the twentieth, the thirtieth, and so on. In a recent paper [ 4] , we 
showed that this A is an irrational number (despite "almost" having a period of twenty 
digits). We will now show that it is transcendental. 

To prove transcendence, we will be using the Thue-Siegel-Roth Theorem. In par
ticular, we will demonstrate the existence of an infinite sequence of rational numbers 
Pn I qn such that 

lA _ 
Pn l < _

1 . 
qn qn2. 1  

Let' s begin by creating a sequence of irrational numbers A0 = A, A 1 , A2 , • • •  such 
that each An is formed by replacing every digit in An-I with zeros except for every 
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tenth nonzero digit (which will be left alone). This means that each An has nonzero 
digits only every 1 0nth place, at 1 0- 10", 1 0-2· 1 0", 1 0-3· t 0", and so on. Visually, this 
sequence looks like the following, where the dots represent zeros. 

A0 = 0.1476563691 1636567496 1476563699 1636567496 
A t = 0  .......... 1 ......... 6 ......... 9 ......... 6 
A2 = 0 ........... .......... .......... ......... . 

(The number A2 doesn't have a nonzero digit until the one hundredth decimal place, at 
1 0- too . )  If we remove the dots and condense these decimals a bit, we see an interesting 
pattern develop (recall that the nonzero digits in An are actually 1 0" decimal places 
apart; think of the spaces in A�o A2, etc . as representing lots and lots of zeros) 

Ao = 0.1476563691 
A t = 0. 1 6 9 6 5 
A2 = 0. 1 6 1 
A3 = 0. 1 6 

6 9 6 1 1 · · ·  
6 5 6 1 6 

1 6 5 6 
1 
1 

1 
6 1 1 . . .  

A simple application of [4, Lemma 3]  shows that for n 2: 2, the sequences of nonzero 
digits in each An are identical : 1, 6, 1, 6, 5, 6, 1, 6, 1, *• where * is either 1, 6, or 5 
depending on the position. This implies that Rn = An - An+t is rational for n 2: 2;  
the cases n = 0 and n = 1 follow immediately from Lemma 2 below. S ince each Rn is 
rational, then if we can show that An is well approximated by rationals (in the context 
of the Thue-Siegel-Roth theorem), this might help us to approximate A as well. Let's 
investigate these An 's  a bit further. 

If we write out just the nonzero digits of An (with appropriate spacing) 

An= 0. 1 6 1 6 5 6 1 6 1 1 · · · (for n 2: 2) 

we clearly see that each An (for n 2: 2) is quite close to the rational number 

Sn -=0. 1 6 1 6 1 6 1 6 1 6 
tn 

Here, just as with An, these nonzero digits of Snltn are actually 1 0n decimal places 

Th I 
. "1 b t . J OIO" +6 Al 

. . 
th A d I apart. us, Sn tn lS east y seen to e 1 02.1on - t . so, 1t lS easy to see at n an sn tn 

differ in the fifth visible position (among other places), which means that they differ 
by about 1 05

41on . As a result, we have 

I Sn I 4 1 1 
An -

tn � 1 05· t 0" < 1 Q4·2· t 0" � tn 2. t 

(The attentive reader will notice that we could have easily replaced the 2 . 1 with 2 .4 or 
even 2 .49. However, 2 . 1 will work fine for our purposes . )  

Let's now relate this back to A.  Recall that we have An+ t = An - Rn. and it is  
easy to show that the rational number Rn has denominator 1 01on+I - 1 for n > 0 and 
denominator 1 020 - 1 at n = 0. We define Pnlqn as 

The denominator qn is 1 02" 10n, the same as tn, because the denominator of each R; 
divides evenly into tn . Thus, 
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A - -- A - R- - - - A - - � -- < � ----I Pn I I L
n-1 Sn I I Sn I 4 1 1 1 

qn -
i=O I tn - n 

tn 105·10" 104.2-10" tn2.1 - qn2.1 

The conditions of Theorem 1 being satisfied, we can conclude that A is transcendental. 

A number from the Fibonacci sequence 

Let us look at a new decimal number, this one constructed from the Fibonacci sequence 
Fn. It' s  easy to show that Fn+60 = Fn mod 10, which means that, as in the case of 
nn , taking the last digit of each number would result in a repeating decimal . Instead, 
we construct a decimal (call it B) from the last nonzero digits . Since the Fibonacci 
numbers are 

then we get 

B = 0.112358314594371 774156178538194 
998752796516737 336954932572912 

112358314594375 774156178538192 . . .  

Our technique i n  proving that B i s  transcendental i s  the same as our proof earlier with 
A (formed from the last nonzero digit of nn ) .  We will construct a sequence of decimals 
B0 = B, B1, B2, each formed by selecting a few digits from the previous number. Each 
Bn will be well approximated by a rational number snftn, which will be used to create 
another rational number Pnfqn. Using Theorem 1 and these rational numbers Pnfqn, 
we will be able to conclude that B is transcendental. 

Let's begin with B1, which will be formed from B0 by keeping every fifteenth digit 
in B0, and replacing all the others with zeros. 

B1 = 0 ............... 1 .............. 4 
.............. 7 .............. 2 

.............. 5 .............. 2 

We condense and continue B 1 to get 

B1 = 0. 1 4 7 2 5 2 3 4 9 2 
1 4 7 2 5 2 3 4 9 6 

9 6 3 8 5 8 7 6 1 6 
9 6 3 8 5 8 7 6 1 2 

(digits are 15 decimal places apart, separated by a stream of O's) .  
Now define B2 to be every tenth nonzero digit of B1, with zeros elsewhere. 

B2 = 0. 2 6 6 2 1 
2 6 6 2 3 

8 4 4 8 8 
8 4 4 8 6 

(digits are 150 decimal places apart, separated by zeros). 
Define B3 to be every fifth nonzero digit of B2• 

B3 = 0 . 1 8 3 6 5 4 7 2 9 9 
1 8 3 6 5 4 7 2 9 8 

(digits are 750 decimal places apart) . 
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Let B4 be every tenth nonzero digit of B3, and we will finally see a beautiful pattern 

appear. 

B4 = 0 . 9 8 7 6 5 4 3 2 1 9 
9 8 7 6 5 4 3 2 1 8 

(digits are now 7500 decimal places apart). 
If we define Bn (for n � 4) to be every tenth nonzero digit of Bn-" we will always 

get (Lemma 4) the pattern 

Bn = 0 . 9 8 7 6 5 4 3 2 1 9 
9 8 7 6 5 4 3 2 1 8 · · · (for n � 4) 

(digits are 75 · 10n-2 decimal places apart) . Furthermore, these Bn ' s have all been cho
sen such that they differ from their predecessors by a rational number; that is, if we 
define Rn = Bn+i - Bn, then Rn is rational. 

Consider the rational number 

Sn 9 . 1075·10"-2 - 10 
tn 

= 
(1075-J0"-2 - 1)2 . 

Writing out the first few nonzero digits, we find that this rational number is 

Sn 
- = 0 . 9 8 7 6 5 4  3 2 · · · . 

tn 

After that 2, the decimal expansion becomes rather complicated, with most of the 
zeros replaced by nines, and then some eights start to show up, but that doesn' t  really 
concern us. What's important is that sn/tn is a good approximation to Bn for quite a 
few decimal places ; in fact, they are the same up to the eighth nonzero digit. Thus, for 
n � 4, 

Let's now relate this back to B4• If we can show that B4 is transcendental, then since 
B4 and B differ by a rational number, then B itself will also be transcendental . 

Recall that we have Bn+i = Bn - Rn, and it is easy to show that R; has denominator 
1075·10;-I - 1 (fori � 4). We now define Pnlqn as 

The denominator qn is (1075·10"-2 - 1)2, the same as tn, because the denominator of 
each R; divides evenly into tn. Thus, 

1 1 
1 08·(75·10n-2) � tn 4 

Thus, by Theorem 1, B4 is transcendental, and hence so is B. 
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A number from the sequence n! 

Finally, let us look at what we get from the last nonzero digit of n!. Starting with 

[!], �. �. 2@], 1� , 7� , 5<@> , 403� , 3628� , 3628�0, 

we get 

c = 0. 1264 22428 88682 88682 44846 44846 88682 

It looks more appealing if we replace the first block of 1264 with 66264, and continue 
out a few thousand digits. We then get the very nice pattern 

C'=0. 66264 22428 88682 88682 44846 
66264 22428 88682 88682 44846 
22428 44846 66264 66264 88682 
66264 22428 88682 88682 44846 
44846 88682 22428 22428 66264 

22428 44846 66264 66264 88682 

(625 digits per line) 

Note that C and C' are related by the linear formula C = 10C' - 6.5 ,  so if C' is 
identified as rational, algebraic, or transcendental, then the same must hold for C itself. 
The number C' turns out to be much easier to work with (notice the nice repetition in 
the first two lines, for example) , and with this in mind, let us define .e. to represent the 
last nonzero digit with a slight variation. 

DEFINITION. For n � 0, define .f.(n) = { lnzd(ng n = 0, 1 
n � 2. 

In a previous paper [4] , we proved that C (and thus C') is irrational. Thanks to the 
new Adamczewski-Bugeaud-Luca theorem, we can now show that it is transcendental . 
An important step in this direction is the following formula for the decimal digits in 
C' . Writing n in base-5 notation as n = :L;:,0 a; 5; (for a; E {0, 1 ,  2, 3 ,  4}) , then .f.(n) 
is given by the reduction mod 1 0  of 6 fl:0 (a; !)2i·a; (see Lemma 7). We can use this 
to explain why the first two lines in the expression for C' are identical, and in fact we 
can go a bit further. The following lemma gives the full story. 

LEMMA 1 .  For r a multiple of four, the first 5' digits of C' equal the second 5' 
digits. 

Proof Let n be a positive integer less than 5'. We can write n = :L;:ci a; 5; , and 
thus n + 5' = :L;:ci (a; 5i) + 1 · 5'. So, by our formula for .f.(n) ,  we have .f.(n + 5') = 
.f.(n) · (1!)2" 1 mod 10 .  Since r is a multiple of 4, then 2' = 6 mod 10, and recalling 
that 6 acts as an identity on the set {2, 4, 6, 8} under multiplication mod 10, we have 
.f.(n + 5') = .f.(n) mod 10, but of course these are both single-digit integers, so we 
conclude .f.(n + 5') = .f.(n) .  Since this holds for all n < 5', the lemma follows.  • 

We now use this lemma to immediately prove the transcendence of the irrational 
number C' . In the notation of the Adamczewski-Bugeaud-Luca theorem, let Un = { } ,  
let Vn b e  the first 54n digits o f  C' ,  and let x = 2. All three criteria o f  Theorem 2 having 
been satisfied, we conclude that C', and hence C, is transcendental. 
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Proofs 

The following technical lemmas are used in the paper. 

LEMMA 2 .  For n not divisible by 1 00, then 

lnzd(nn ) = lnzd((n + I O ot+100) .  

Proof We first note that i f  1 00 J n then lnzd(n) = lnzd(n + 1 00) . Also, lnzd(ab) = 
lnzd(a)b mod 1 0  for all a, b > 0. This allows us to state that lnzd( (n + 1 00)n+IOO) = 
lnzd(n + 10 oy+IOO = lnzd(n )n+IOO mod 1 0, so the lemma reduces to proving that 
lnzd(ny+IOO = lnzd(nY mod 1 0. This is clearly true for lnzd(n) = 5 .  If lnzd(n) = 
1 , 3 ,  7 ,  or 9, then since each of these raised to the fourth power gives I mod 1 0, we 
have lnzd(n )n+ 100 = lnzd(n )n · 1 25 = lnzd(n Y. If on the other hand lnzd(n) = 2, 4, 6,  
or  8 ,  then since each of  these gives 6 when raised to  the fourth power mod 1 0, we have 
lnzd(ny+IOO = lnzd(nY · 625 = lnzd(n )n · 6. Now, lnzd(n) is even in this case, and 6 
acts as a multiplicative identity on even numbers mod 1 0, so we end up with lnzd(n )n , 
as desired. • 

LEMMA 3 .  For n = 7500 · 1 0k, k;:::.: 0, then lnzd(Fn ) = 9. 

Proof This is certainly true for k = 0, by inspection. For k > 0 we use induction 
and the identity [19, Formula 42] 

Assume that n is as given and that lnzd(Fn ) = 9. By observation, the Lucas numbers 
mod 1 00 have period 60; since 6017500, this implies that Ln = 2 mod 1 00.  An appli
cation of [15, Theorems 6 and 7] and [18] gives that Fn ends in exactly k + 4 zeros, 
and Fwn in k + 5 zeros. With all this in mind, we write the above formula as 

( Fwn ) ( Fn ) 
1 0k+4 mod 1 00 = 

1 0k+4 mod 1 00 

. [29- 8 . 27 + 2 1 . 25 - 20 . 23 + 5 · 2] mod 1 00 

= 
( 

1
;:4 mod 1 00) [ 1 0] mod 1 00 = 90. 

This implies that lnzd(F10n) = 9, as desired. • 
LEMMA 4 .  For n = 7500 · 1 0k, k ;:::.: 0, and 1 :'S i :'S 9, then lnzd(F;n ) = 1 0- i .  

Proof The case i = 1 is covered b y  Lemma 3 .  For i = 2 w e  apply the formula 
F2n = FnLn and the fact (mentioned in Lemma 3) that lnzd(Ln ) = 2. The other cases 
proceed by induction and the formula F;n = F(i-I)nLn - F(i-2)n from [10, p. 92] . • 

LEMMA 5 .  For k not a multiple of5 and for b  ;:::.: 1, then £(5bk) = 8bk · £ (5bk- 1 )  
mod 10. 

Proof £ (5bk) = lnzd( (5bk) ! )  = lnzd( (5bk- 1 ) !  · 5hk) . It's easy to show that 
2h+ 1 1(5bk- 1) ! ,  so we can write this last expression as lnzd( (5bk- 1)!2-b · 10bk) = 
lnzd((5hk- 1 ) !2-h. 6h. 1 0hk) because 6 acts as the identity on {2, 4, 6, 8} under 
multiplication mod 1 0. Replacing 6h with 2h 8h, cancelling the 2 's and moving the 
8 ' s  outside, we get 8b . lnzd( (5bk- 1 ) !k) mod 1 0, which gives us 8bk · £ (5bk- 1 )  
mod 10 .  • 
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LEMMA 6 .  For k  2: 1 not a multiple of5 and for c 2: 1 ,  then 

( 1 ) £ (5bk) = 2hk . £ (5b (k - 1 ) )  mod 10. 
(2) £ (5b (5c - 1 ) )  = 4 · £ (5h+l (c - 1 ) )  mod 10. 

Proof We induct on b .  For b = 0, the first statement is trivial and the second fol
lows from applying Lemma 5 four times. We now assume that ( 1 )  and (2) hold for 
b < a ,  and attempt to prove them for b = a. For the first, 

£ (5ak) = 8ak . £ (5ak - 1 ) mod 10  

= 8ak . 4 . £ (5 . csa- ! k - 1 ) )  

= 8ak · 42 · £ (52 · (5a-2k - 1 ) )  

= 8ak · 4a · £ (5a · (k - 1 ) )  

= 2ak · £ (5a · (k - 1 ) )  

(by Lemma 5)  

(by equation (2) with b = 0, c = sa- l k) 

and for the second, £ (5a (5c - 1 ) = 2a (5c - 1) · 2a (5c - 2) · 2a (5c - 3) · 2a (5c -
4) · £ (5a (5c - 5)) by applying ( 1 )  four times, and after simplifying mod 10  we get 
4£ (5a (5c - 5)) , which is 4 · £ (5b+ l (c - 1 ) ) .  • 

LEMMA 7 .  For n  = L:o a; Si , then £ (n) = 6 n:o (a; !)2i ·a; mod 10. 

Proof Suppose 5;0 is the largest power of 5 dividing n .  We can thus write n = 
5;0 (m + a;0 ) for m some integer multiple of 5 . Applying part ( 1 ) of Lemma 6 a;0 times, 
we get £ (n)  = ioa;o (a;0 !) £ (5;0m) mod 1 0. We now repeat the process with n replaced 
by 5;0m = n - a;0 5

;0 (and so on) to eventually arrive at the desired formula. • 

For F u rther Study 

For those interested in the history of mathematics, Morris Kline' s  book [9] is an ex
cellent resource. One also shouldn't  ignore Kurt von Fritz 's  article [16],  which gives 
a delightful discussion of how in the fifth century BC Hippasus might have discovered 
irrational numbers by using a pentagon, thus suggesting that the first irrational number 
could have been the golden ratio, ( 1 + ,JS) /2. Of course, the golden ratio is also the 
limit of the ratio of successive Fibonacci numbers , which brings us back to one of the 
subjects of this article. 

For those interested in creating more transcendental numbers like the three given 
in this article, a good place to start might be with other famous sequences such as the 
squares or the triangular numbers . Euler and Sadek [6] suggest looking at the last digit 
of the primes p, or perhaps of pP .  If one wishes more sequences to study, there are 
well over a hundred thousand of them at N. J. A. Sloane's  On-Line Encyclopedia of 
Integer Sequences (http : I /www . research . att . com/ -nj as/ sequences/) .  

Finally, J .  Siehler suggested looking at algebraic numbers. Is there a way to recog
nize or to perhaps write down a decimal expansion for an algebraic number, using a 
theorem similar to the two theorems of this paper? What would such a number look 
like? It might be easy to prove such a number is algebraic yet hard to actually find its 
minimal polynomial ! 

Acknowledgments. The author would like to thank J. Siehler for his assistance on Theorem 2, and classics 
professors M.  Carlisle and K. Crotty for their comments on Greek etymology. 
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An Expl orat ion of P ick's Theorem in Space 

H O WA R D  I S E R I  
Mansfie ld  U n ivers ity 
Mansfie ld ,  PA 1 6933 
h i seri @ mansfie ld .edu 

Georg Pick described the following remarkable theorem involving the integer lattice 
points of the xy-plane, the points in the plane with integer coordinates, and lattice 
polygons, simple polygons with all of their vertices at lattice points . 

PICK ' s  THEOREM . Given a lattice polygon P, the area of P is given by 

B 
A =  I + - - 1 , 

2 

where A is the area enclosed by the polygon, I is the number of lattice points in the 
interior of the polygon, and B is the number lattice points on the boundary of the 
polygon. 

Figure 1 A s i m p l e  l att i ce polygon 

For example, in FIGURE 1 ,  the polygon shown has I = 22 interior lattice points and 
B = 1 1  boundary lattice points . By Pick's  theorem, the area is 

1 1  53 
A = 22 + - - 1 = - .  

2 2 

We will not prove Pick's theorem here, since many proofs are easily found in the 
literature (see [3, 4, 7, 8, 10, 12, 13] , for example) . All of these proofs are accessible 
and interesting, and their variety is also, but for us, Pick's theorem will be a basic 
assumption. 

The conclusion of Pick's theorem, while unexpected, is easy to make sense of, and 
deeper understandings seem to come in manageable and satisfying chunks. Best of 
all ,  like its close relative, Euler's  theorem, there always seems to be something more 
to know. The Mathematics Monthly and this MAGAZINE alone contain an extensive 
series of articles about Pick's theorem [2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ,  12, 13, 14].  In 
addition to the proofs already mentioned, these contain a variety of explorations, and 
they discuss, for example, extensions of Pick's  theorem to higher dimensions and more 
general shapes .  Here, we will explore how Pick's theorem applies to polygons in a 
three-dimensional lattice. More accurately, we will consider flat polygonal disks sitting 
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in space, since the area of a non-planar polygon described by its vertices would be 
difficult to work with, even if we could make sense of it. So keep in mind that when 
we talk about the area of a polygon in space, the vertices of the polygon must lie in a 
plane, and the area of the polygon is the area of the region enclosed by the polygon in 
that plane. We will be expanding on ideas contained in a computer science article [1] 
regarding inverse Pick 's problems like the following. 

A (flat) quadrilateral (disk) with vertices (0, 0, 0) , ( -7, 8, 3), ( - 10, 10, 6) , and 
( -8 ,  7, 6) lies on the plane 9x + 6y + 5z = 0. How many integer lattice points 
are contained in this quadrilateral? 

The answer to this question might be of interest to us, if we wanted to display a 
three-dimensional image of this quadrilateral on a computer screen, or perhaps even 
in a hologram consisting of a three-dimensional array of pixels,  since the number of 
pixels that naturally lie on the quadrilateral would have some influence on its appear
ance. For a polygon drawn on a piece of graph paper, it is easy to count the lattice 
points, and Pick' s  theorem provides a satisfying way to compute the polygon' s  area 
from this information. For a lattice polygon sitting in space, however, finding the num
ber of three-dimensional lattice points that lie on the disk is actually more difficult than 
finding its area. In this context, therefore, the more satisfying problem tends to be the 
problem of finding the number of lattice points from the area, that is, in solving the 
inverse Pick's  problem. 

The computer science article [1] in question, which presents algorithms that solve 
inverse Pick's  problems, is not easy to understand, but the underlying mathematical 
results are well-worth exploring, and as we work through these ideas using elementary 
methods, we will see connections between some of the fundamental structures of linear 
algebra, number theory, and geometry. 

1 . Variations on Pick's theorem 

A few easy variations on Pick's  theorem, and some insight into our main explorations 
come from considering other kinds of lattices. 

1.1. Skewed lattices. Pick's  theorem is preserved, in some sense, under any linear 
transformation from the plane to itself, if we use the images of the lattice points to 
form a new skewed lattice. For example, consider the linear transformation that maps 
( 1 ,  0) �---* (2, 0) and (0, 1 )  �---* ( 1 ,  1 ) .  Specifically, 

or in matrix form 

x' = 2x + y 

y' = y ,  

The lattice points and polygon i n  FIGURE 1 map to the lattice points and polygon in 
FIGURE 2. Not surprisingly, the number of interior and boundary lattice points stays 
the same, but the area will increase by a factor of two. The reason for this can be 
seen by looking at what happens to the unit square shown at the lower left in FIGURE 
1 .  It  maps to the parallelogram shown at the lower left of FIGURE 2 with vertices 



1 08 MATH EMATICS MAGAZI N E  

• 

• 

• • 

/ 7 .  • 

• • 

• 

• • 

• • • 

• • 

• 

• • 

Figure 2 A transformatio n  of the l attice shown i n  F I G U R E  1 

• • 

• 

• 

(0, 0) , (2 ,  0) , (3 , 1 ) ,  and ( 1 , 1 ) . Its area is 2. A basic fact of linear algebra is that the 
determinant of the matrix of transformation, 

1 � � 1 = (2) ( 1 )  _ ( 1 ) (0) = 2. 

is the area of the image of a unit square, and in general, a conversion factor for areas . 
We will call a parallelogram like the small one in FIGURE 2, a unit parallelogram. 

In Pick's  theorem, the area can be interpreted as measuring how many unit squares 
fit in a given polygon, and for a skewed lattice, like the one in FIGURE 2, Pick's 
theorem tells us how many unit parallelograms fit in the image of the original polygon. 
In order to find the new area, therefore, we use Pick's theorem and multiply by the area 
of the unit parallelogram. In FIGURE 2, therefore, we count the lattice points, put this 
into Pick's theorem to get ?f, and multiply by 2. The area is A' = 53. In general, we 
have the following, if U is the area of a unit parallelogram, then the area formula in 
Pick's theorem becomes the following. 

SKEWED PICK ' S  THEOREM.  For a lattice polygon in a skewed lattice with unit 
parallelograms of area U, the area of the polygon is given by 

A = U (I + � - 1) . 

1.2. One-dimensional lattices. Before moving on, it will be useful to lay out how 
the one-dimensional lattice on a line relates to the two-dimensional lattice of the xy
plane. 

Consider a line segment from the lattice point (0, 0) to the lattice point (a , b) . For 
any integer n ,  the point (na ,  nb) must be a lattice point that lies on the line through 
(0, 0) and (a , b) . It follows that the line segment from (0, 0) to (a , b) has no inte
rior lattice points if and only if a and b are relatively prime (i .e. ,  if gcd(a, b) = 
1 ) .  In general, given a line segment from (0, 0) to (a , b) with d = gcd(a, b) , then ( ;i .  � ) .  (� .  �)  . . . .  , ( (d�l )a , (d�l )b ) are the d - 1 interior lattice points, and we have 
the following fact. 

SEGMENT PICK ' s  THEOREM.  Given a lattice line segment in the plane with vector 
[a , b], in addition to the two lattice end points, the segment would contain I = d - 1 
interior lattice points, where d = gcd(a, b). 

The spacing between the lattice points on the line segment, that is, the length of a 
unit segment, is 
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and we have a convoluted length formula 

../a2 + b2 
L = (/ + 1 )  

d 
, 

1 09 

where I = d - 1 is the number of interior lattice points . This is a Pick's  theorem for 
lattice segments lying in the plane. We would not typically use this formula to compute 
the length of a segment, of course, but given the length of the segment and its slope, we 
could use the formula to find the number of lattice points . This is the idea we will use 
in solving our inverse Pick's  problems for lattice polygons in space, but for segments 
in the plane, our segment Pick's  theorem is all we will need. 

2 .  Latt ice poi nts on a p lane i n  space 

A line will pass through some of the lattice points of the xy-plane, and just miss others . 
The same is true for planes lying in xyz-space. In both cases, the lattice points that lie 
on the line or plane exhibit regular patterns. 

0 0 • 0 0 0 • 0 z 
y 

0 0 0 0 • 0 0 0 

0 0 • 0 0 0 • 0 

0 0 0 0 • 0 0 0 
. . . . . . 

0 0 .. 0 0 0 • 0 

0 0 0 0 . • . 0 0 0 . . . . 
0 0 • 0 0 0 • 0 

· · . . . . . 
X 

0 0 • 0 0 0 • 0 

Figure 3 A latt i ce tr iangle i n  space 

Consider the plane p with equation x + 2y + 4z = 8 .  The lattice points on a small 
section of p are shown on the right side of FIGURE 3. All of the three-dimensional 
lattice points project naturally onto the two-dimensional lattice points of the xy-plane. 
On the left of FIGURE 3 ,  the lattice points of the xy-plane that correspond to the three
dimensional lattice points on p are shown with solid dots . For example, the lattice 
point (2, 1 ,  1 )  lies on p, and the point (2, 1 )  is shown with a solid dot. If we were 
to extend the plane p beyond the triangle, we would see that the three-dimensional 
lattice points that lie on p form a skewed lattice on p. We can, therefore, apply the 
skewed Pick's  theorem to any lattice polygon lying on p. In order to do that, we would 
need to find a unit parallelogram, which would be easy while looking at a picture, like 
FIGURE 3, but drawing the picture would be hard, and we would like to be able to get 
this information directly from the equation of the plane. 

The plane in this example has positive x- ,  y- ,  and z-intercepts, and planes like this 
are easy to graph, but in what follows, it will be more convenient to work with planes 
passing through the origin. This will not matter, however, since Pick's  theorem does 
not care where the origin is .  
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2.1.  Lattice planes. The version of Pick's theorem that we are after applies to planar 
polygonal disks , that is, a region of a plane bounded by a polygon. As mentioned 
earlier, when we refer to a polygon in space, we will do so with the understanding that 
we are really referring to a planar polygonal disk. With this in mind, a lattice polygon 
in space will need to lie on something we will call a lattice plane. The lattice points 
from the three-dimensional lattice that lie on this lattice plane will form a skewed 
lattice, and the skewed Pick's  theorem will apply directly. We need, therefore, to better 
understand these lattice planes. 

First we will establish that those planes containing three non-collinear lattice points 
(including the origin) are precisely those with an equation of the form ax + by + cz = 
0 with a , b, and c being integers, not all zero. We will call a plane satisfying either of 
these conditions a lattice plane. 

Suppose a plane p has three non-collinear lattice points, (0, 0, 0) , (x 1 , y1 , z 1 ) and 
(x2 , Y2 , z2) . These points determine the vectors u1 = [x 1 , y1 , z d  and Uz = [x2 , y2 , z2] .  
The cross product u 1  x u 2  = [a , b ,  c ]  is such that a ,  b,  and c are integers, and since the 
three points are non-collinear, this cross product is non-zero. Therefore, at least one of 
a ,  b, and c must be non-zero. Furthermore, ax + by + cz = 0 is an equation for the 
plane p .  

Conversely, i f  ax  + by + cz  = 0 i s  the equation of a plane p with integer coeffi
cients, then (0, 0, 0) , (b, -a ,  0) , and (0, c, -b) are three distinct, non-collinear lattice 
points lying on the plane, as long as b =I= 0. Similarly, If a =I= 0 then the points (0, 0, 0) , 
(b , -a,  0) , and (c, 0, -a) are the three distinct, non-collinear lattice points desired, or 
if c i= 0 we can use the points (0, 0, 0) , (0, c, -b) ,  and (c, 0, -a) . In any case, as long 
as at least one of a, b, and c is non-zero, we must have three distinct, non-collinear 
lattice points on the plane p .  

This confirms that our two defining conditions for a lattice plane are equivalent. 

2.2. Level lines of lattice points. As we saw in the example, it appears that the 
three-dimensional lattice points that lie on a lattice plane form regular horizontal rows. 
These correspond to level curves, or contour lines, for the plane viewed as a surface. 
Consider a lattice plane p with equation ax + by + cz = 0, and for convenience, we 
assume also that the three coefficients have no common divisors . The situation is very 
simple, if any of the coefficients are zero, so we will assume that all the coefficients 
are non-zero. The plane p intersects the xy-plane in the line ax + by = 0, and this is a 
level line, or contour line, for p .  All the level lines on p are parallel to this one, and we 
will see that all the three-dimensional lattice points on p sit nicely above these level 
lines. Note that if any of our coefficients were zero, our level lines would be parallel 
to at least one of the coordinate axes or all stacked up on each other. While these are 
simpler cases, they are probably best dealt with separately. 

Remember that the level lines for p, or the level curves for any surface in gen
eral, are defined to lie in the xy-plane. We will begin by figuring out which of the 
level lines actually contain two-dimensional lattice points from the xy-plane, and 
we will then figure out which of these correspond to three-dimensional lattice points 
on p .  

FIGURE 4 illustrates this for the lattice plane x + 2 y  + 4 z  = 0 .  The level lines for 
this plane take the form x + 2y = k ,  and the level lines for k = - 1 ,  0, 1 ,  2, 3 ,  4, and 
5 are shown. The integer values of k, in this case, partition the lattice points of the xy
plane, and the values of k that are divisible by 4 correspond to integer values of z,  and 
therefore, the three-dimensional lattice points on the plane x + 2y + 4z = 0. These 
are indicated with solid dots . Note that the level line x + 2y = 0 is the level line on 
the intersection between p and the xy-plane, and the other lattice points are organized 
along the other level lines . 
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Coming back to the general case, the line ax + by = 0 contains the lattice points 
(0, 0, 0) and (b , -a ,  0) . From what we have seen before, if d = gcd(a,  b) , then the 
lattice points on this line are the points ( o/} ,  - '2jf) for any integer n, and the lattice 
point ( � ,  - ;}) is adjacent to (0, 0) on this level line. In other words, the vector [ � ,  - ;} ] 
determines the spacing for the rest of the lattice points on this level line. 

In general, the level lines take the form ax + by = k. A basic fact of number theory 
states that for all the integer linear combinations of a and b, ax + by , the smallest 
positive linear combination is the greatest common divisor d = gcd(a ,  b) , and further
more, all the linear combinations are multiples of d.  It follows that the lines of lattice 
points in the xy-plane fall on level lines of the form ax + by = nd for any, and all ,  
integers n. 

Each of the lines ax + by = nd are level lines for the plane p ,  but not all of them 
correspond to integer values of z. The ones that do are the level lines that contain the 
three-dimensional lattice points on p. Since z must satisfy ax + by +  cz = 0, we must 
have cz = -nd, and 

nd 
z = - - .  

c 

Since a ,  b, and c are relatively prime, d and c must be also. Therefore, in order for z to 
be an integer, c must divide n .  It follows that the lines of lattice points in the xy-plane 
that correspond to spatial lattice points on p must satisfy 

ax + by =  cmd 

for all integers m, and the corresponding z-coordinates are z = -md. 
The level line ax + by = d is adjacent to ax + by = 0 as a level line of lattice 

points in the xy-plane. If (x0 , y0) is an integer solution to ax + by = d, then integer 
multiples of the vector [x0 , y0] will determine a lattice point on each level line of lattice 
points. The points (cmx0 , cmy0) for each m, therefore, will be a lattice point on one 
of the level lines corresponding to three-dimensional lattice points on p. The basic 
problem, therefore, lies in finding (x0 , y0) ,  and this can be done by inspection or by 
using the Euclidean algorithm. We have established the following. 

LE M M A .  Let p be a lattice plane with equation ax + by + cz = 0, where a, b, and 
c are non-zero integers that are relatively prime. Then the three-dimensional lattice 
points on p will be those with coordinates 
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( nb na  ) cmx0 + d '  cmyo - d '  -md , 

where d = gcd(a , b), (x0 , y0) is an integer solution to ax + by = d, and m and n run 
through the integers. 

In vector notation, these lattice points can be expressed as 

[ nb na J [ b a J cmx0 + d '  cmy0 - d '  -md = m [cxo , cyo , -d] + n d '  - d ,  0 , ( 1 )  

and the vectors [cx0 , cy0 , -d] and [ � , - � , 0] form a lattice basis for the skewed lat
tice on p. This lattice basis determines a unit parallelogram, and so the cross product 
of these two vectors, specifically [-a ,  -b ,  -c] ,  determines the area of a unit parallel
ogram. This area is U = ,J a2 + b2 + c2 • The skewed Pick's theorem now applies to 
the three-dimensional lattice points on the boundary and in the interior of any lattice 
polygon lying on p .  

S PATIAL PICK ' S  THEOREM . Suppose P is a lattice polygon in space that lies on 
a plane p with equation ax + by + cz = 0, and a, b, and c are relatively prime. If 
B is the number of spatial lattice points on the boundary of P, and I is the number 
of spatial lattice points in the interior of P (i. e. , lying on the planar polygonal disk 
bounded by P ), then the area of P is given by 

A = J a2 + b2 + c2 (I + � - 1) . (2) 

As an example, consider the plane p with equation x + 2y + 4z = 0 (p is paral
lel to the plane in FIGURE 3, so as far as Pick's theorem is concerned, they're the 
same plane) . Since d = gcd( 1 ,  2) = 1 ,  we wish to find an integer solution to the equa
tion x + 2y = 1 .  We could use the Euclidean algorithm to find this, but the solution 
(x0 , y0) = ( 1 ,  0) is obvious. The corresponding z-coordinate is z = - 1 . Our lattice 
basis vectors from equation 1 are 

[ (4) (1) , (4) (0) , - (1 ) ]  = [4, 0, - 1 ] and [ ��� ' - � � � ' 0 J = [2, - 1 ' 0] . 

The cross product of the basis vectors is [- 1 ,  -2,  -4] , and so the area of the unit 
parallelogram is the magnitude, ,J21. The area of the triangle shown in FIGURE 3 can 
now be computed using Pick's  theorem. Since the number of interior lattice points is I = 1 ,  and the number of boundary lattice points is B = 8, the area of the triangle is 

A = 51 ( 1 + � - 1) = 451 . 

As you can see here, finding I is more difficult than finding A ,  since we can use 
the cross product to compute the area of the triangle directly. This version of Pick's 
theorem, therefore, is generally more useful in solving the inverse Pick's problem, as 
we will see later. If we look a little closer, however, we will see that areas can be 
computed nicely using Pick's  theorem and a little trick. 

2.3. A related area formula. The area of a lattice triangle or parallelogram is easy 
to compute with a cross product, but this becomes cumbersome for more complicated 
polygons. One nice aspect of Pick's theorem is that more complicated polygons do not 
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make counting lattice points significantly more difficult. As we have already noted, 
however, counting three-dimensional lattice points is hard. If we were to project a 
polygon in space onto the xy-plane, however, counting lattice points becomes much 
easier. 

For our lattice plane p with equation ax + by + cz = 0 and non-zero, relatively
prime coefficients, we know that the area of the unit parallelogram is -J a2 + b2 + c2 •  
If we project the lattice basis vectors onto the xy-plane, we get [cx0 , cy0 , 0] and 
[ � ,  - J ,  0] . The cross product of these two vectors is 

[ cax0 cbyo ] c c 
0 0 - - - - = - - [0 0 ax0 + by0] = - - [0 0 d] = -c[O 0 1 ]  ' , 

d d d ' ' d ' ' ' ' ' 

and so the area of the parallelogram spanned by these two vectors is I c 1. It follows that 
if A is the area of a polygon P lying on p, and Axy is the area of the projection of P 
onto the xy-plane, then 

A -Ja2 + b2 + c2 
Axy l e i  

We can use Pick's  theorem to find Axy •  and then this formula gives u s  A .  There is 
nothing inherently special about projecting onto the xy-plane, so it is not surprising 
that 

and 

A -J a2 + b2 + c2 
Axz l b l 

A -Ja2 + b2 + c2 
Ayz l a l 

Putting these together, we see that 

and twisting these together surprisingly results in 

a2A2 b2A2 c2A2 __ Y_' Z + _
_ x_z + __:2_ 

a2 b2 c2 

= JA;z + A�z + A�y · 

(4) 

We can find A using Pick's  theorem without needing a, b, and c !  Even more striking 
is the resemblance between this formula and the distance formula. Another proof of 
equation 4 can be found in [10] , along with the following sentence, which is almost as 
nice as the formula. 
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The result i s  undoubtably known, but an informal survey revealed that it i s  not 
"well-known." [10, p. 255] 

In any case, this formula is so nice, everyone should know it. 

• • • • • • • • 

• • • • 

• • • 

• • • 

• • • • • 

• • • • • 

• • • • 

• • • • 

• • 

• • 

• • • 

• • • 

Figure 5 The project ion onto the xy-p lane with area Axy 

We now have a way of computing areas for lattice polygons in space. Consider 
the quadrilateral mentioned at the beginning of this article. It has vertices (0, 0, 0) , 
( -7, 8 ,  3) ,  ( - 10, 10 ,  6) , and ( -8 ,  7 ,  6) , and lies on the plane 9x + 6y + 5z = 0. 
Projecting this quadrilateral onto the xy-plane produces a quadrilateral with vertices 
(0, 0) , ( -7, 8) , ( - 10, 10) ,  and ( -8 ,  7 ) .  This projection is shown in FIGURE 5, and it 
is easy to see that there are 9 interior lattice points and 4 boundary lattice points . By 
(the original) Pick's  theorem, the area is 

(4) Axy = (9) + l - 1 = 10 .  

We also know the equation of  the plane, so  by equation 3 

A = J(9)2 + (6)2 + (5)2 . 1 0  = 2,Jl42. 
5 

(5) 

With these two values, the areas of the other projections are easily found with equation 
3. Since 

1 0  
5 

we see that Axz = 1 2  and Ayz = 18. On the other hand, if we did not have the equation 
of the plane, the areas Axz and Ayz could have been computed with Pick's theorem, 
and then A could be found with equation 4. The computation of A would then look 
like 

A = J(10)2 + ( 1 2)2 + ( 1 8)2 = 2,JU2. 

2.4. The inverse Pick's problem. Finally, we can now solve the inverse Pick's  prob
lem posed at the beginning of this article. How many interior and boundary (spatial) 
lattice points lie on the quadrilateral? From equations 2 and 5, we know that 
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so 

The number of boundary lattice points are easy to find. In this case, the edges have 
vectors [-7 ,  8, 3 ] ,  [-3 ,  2, 3 ] ,  [2, -3 ,  0] , and [8 , -7 ,  -6] . Since each triple of compo
nents in each of these vectors are relatively prime, there are no spatial lattice points on 
the sides other than at the vertices. (Even if these were not relatively prime, the number 
of non-vertex lattice points on each side would be the greatest common divisor minus 
one.) Therefore, there are B = 4 three-dimensional lattice points on the boundary. It 
then follows that there is I = 1 three-dimensional lattice point in the interior. 

In general, therefore, given any lattice polygon P ,  we can find its area directly or 
by using Pick's  theorem on the projections of P ,  find the number of boundary lattice 
points from the side vectors, and finally, find the number of interior lattice points from 
the spatial version of Pick's theorem. 
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The engineer James Watt ( 1736-18 19) was a pioneer of steam power in the United 
Kingdom. His practical work revolutionised the rather inefficient atmospheric engines 
of his predecessors such as Newcomen. He vastly improved these engines in a vari
ety of ways so that steam power became the "prime mover" of his age. In doing so 
he accelerated the Industrial Revolution and helped to usher in the modem industrial 
era. 

In this article I want to re-examine a mechanism he invented to constrain the piston 
of a steam engine to move in a straight line. It consists of the simple linkage system 
illustrated in FIGURE 1. This may appear rather trivial to us now but with the rise 
of the importance of mechanical engineering during the Victorian period this, and 
related mechanisms, had many important applications. Such linkages still find many 
contemporary uses and modem research in robotics and flexible structures rely on the 
geometry which we are going to examine here. 

Figure 1 Watt's linkage 

Watt published his linkage in a patent dated August 24th, 1784 and it is important 
to remember that he did not claim it produced a true straight line. He understood its 
importance and in his old age he wrote to his colleague Matthew Boulton 

Although I am not over anxious after fame, yet I am more proud of the parallel 
motion than of any other invention I have ever made. 

The parallel mo tio n is a simple development of the linkage shown in FIGURE 1 and 
this is the phrase used in historical engineering books. 
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Mathematical functions 

The mathematical description of Watt's  linkage will be in terms of implicit functions 
and so we shall consider these first. The usual modern definition of a function f is a 
rule which takes each element of the domain X and assigns a unique element in the 
codomain Y. Sometimes we think of the rule as a mapping or a procedure. Sometimes 
we write the function f : X -+  Y as y = j (x) ,  where x E X and y E Y .  

Some examples, where X and Y are both the set lR of real numbers, are f (x) = x3 
and f (x) = ex . It is surprising to learn that this  particular definition of function is 
a relatively recent innovation. I 'd like in this article to point out an older notion of 
function which, because of some rather exciting new techniques for solving systems of 
polynomial equations, is likely to become more important again. These techniques rely 
on the pure mathematics of rings and groups, but already have important applications 
in mechanical engineering and robotics design. 

Just over one hundred years ago the English mathematician G. H.  Hardy, in his 
famous book [5] , made the following remarks about functions. 

We must point out that the simple examples of functions mentioned above pos
sess three characteristics which are by no means involved in the general idea of 
a function, viz: 

1 . y is determined for every value of x ;  
2 .  to each value of x for which y i s  given corresponds one and only one value of 

y ;  
3 .  the relation between x and y is  expressed b y  means o f  an analytical formula . 

. . . All that is essential is that there should be some relation between x and y 
such that to some values of x at any rate correspond values of y . 

Hardy then goes on to give a number of further examples to illustrate these ideas 
which can be broadly separated into two groups.  Firstly are those which involve a for
mula, equation or algebraic expression in x and y .  This might include an infinite sum 
such as a series. The second are when the relationship between x and y follow from 
some geometrical construction. In this article we shall also look at both these con
structions. In particular we shall find an equation which describes the geometric curve 
shown in FIGURE 1 by algebraic means with the help of a computer algebra system. 

To begin, for a clearer separation between algebraic and the more geometric notions 
of function, we shall go back even further and look at the work of Leonhard Euler. 
Euler wrote rather a lot of mathematics .  For us, the separation between algebraic and 
geometric notions of function are clearly explained by him in the two volumes [2] and 
[3] . 

§4. A function of a variable quantity is an analytic expression composed in any 
way whatsoever of the variable quantity and numbers or constant quantities. 
Hence every analytic expression, in which all component quantities except the 
variable z are constants, will be a function of that z; thus a + 3z ;  az - 4z2 ; 
az + --/a2 - z2 ; cz ; etc . are functions of z .  [2] 

Here Euler proposes that afunction is that which can be expressed using an analytic 
expression. This notion is not that of an input-output machine, in which the domain 
and codomain are distinguished. "§ 1 6. If y is any kind of function of z, then likewise, 
z will be a function of y. "  It is important to realise in connection with this statement 
that the same algebraic expression represents both functions .  For example, if we think 
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about y = x3 again, for Euler, this i s  as much a function of y as it i s  a function of x .  It 
all depends on how you are thinking about it at any moment. 

A result of this is that functions can be multiple valued: "§10. Finally we make a 
distinction between single-valued and multiple-valued functions. " In particular, Euler 

gives -J2z + z2 as an example of a two-valued function. 

Whatever value is assigned to z ,  the expression -J2z + z2 has a twofold signifi
cance, either positive or negative. 

As another example, the usual way of expressing a circle, for example 

x2 + y2 = 1 ,  ( 1 )  

is to  Euler a "function". I t  fails to be  a function in  the modern sense, even if  restricted 
to the domain ( - 1 ,  1 ) ,  since to each value of x in this range there are two choices for 
y .  Likewise, for each value of - 1  < y < 1 there are two possible values of x .  The 
modern definition requires only one value for each x in the domain. This is not just 
nit-picking, but an important restriction on what can be a function. 

We compare this with the opening of the next volume [3] , in which quite a different 
notion of function is examined. This is of a single-valued function of a real variable, 
which can be represented by a graph. 

Thus any function of x is translated into geometry and determines a line, either 
straight or curved, whose nature is dependent on the nature of the function. [3, 
§6] 

Conversely, explains Euler, "a curve can define a function " .  It is this notion of function 
as curve in space to which [3] is devoted. In particular, the topic of curves generated 
by an algebraic equation relating x and y is developed in detail in [3] . 

What both these definitions have in common is the notion we would describe as an 
implicit function. Implicit functions do not, I think, have the popularity they deserve. 
In this article I want to show some situations in which using them leads to tidier math
ematical results, and then to explain some applications in which they arise naturally. 
In particular, the curve shown in FIGURE 1 will be described by an implicit function. 

The straight l ine 

The straight line is usually described by the equation y = mx + c . The first point to 
note is that the value of y is given as an explicit algebraic expression in x ,  namely 
mx + c. So, it is clear that to each x is assigned a unique value of y. As a result of this 
we can draw a graph, and we find that m is the slope, and c the intersection of the line 
with the y-axis .  

Conversely, if we have a line in the plane, then unless the line is vertical, we can 
write the equation relative to a pair of axes. But such a description cannot capture the 
case in which the line is parallel to the y-axis. Here, we have only one value of x for 
which there exists values of y ,  and indeed every value of y is identified with this value 
of x .  We would need to write this line as x = a ,  say. 

However, if we expand our notion of function to include "expressions composed 
howsoever from the quantities", we may include equations such as the following. 

ax + by =  p .  (2) 
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In this, we can recover y = mx + c by division, provided b i= 0. If b = 0 then, ax = 
p, which expresses a vertical line. Initially this equation appears more complex, having 
three unknowns a, b and p instead of the usual two. But it is more general . I shall now 
explain why I prefer this form with some more substantial observations . 

Let us assume that we have two different points (xa , Ya ) and (xb, Yb) .  The task is to 
find a straight line between them. It turns out that the expression representing a straight 
line through these two points is given by the standard slope-intercept form by a rather 
complicated equation 

(3) 

If Xa = Xb then we would divide by zero, which is forbidden. This corresponds to a 
vertical line, and as before, we cannot express this in the form y = mx + c .  

If  we re-write (3)  in the form (2), then we have 

This appears to be complex, but there is a symmetry between the Xa , xh, Ya and Yb 
which is arguably easier to see, and hence remember, than in (3) .  Putting the point a 
on the y-axis as (0, a) ,  and the point b on the x-axis as (b, 0) this reduces to the form 

ax + by = ab.  

So an easy way to remember the formula is to look at the two axis intercepts : there 
is no need to calculate the slope, just to find the equation of the line. If we define 
p : =  � then this can again be re-written in the form V a2+b2 

sin(t)x + cos (t)y = p ,  

where t is the angle of the line to the x-axis and p now represents the perpendicular 
distance of the line from the origin. In this form we recover an equation in only two 
unknowns, t and p.  In all these forms the symmetry between x and y, and the two 
interpolated points, is arguably more natural than in the traditional form of the equation 
for a straight line. 

Circles are almost always expressed in an implicit way, as is the ellipse 

xz y2 

a2 + 
bz = 1 .  

If we use the form (2) for the equation of a line, then it an exercise for you to show 
that the tangent to this ellipse, through the point (x0 , y0) is given by 

xxo 
+ 

YYo 
= 1 .  

a2 b2 

Again, this seems to be simpler and more general than the form y = mx + c would 
permit. 

So l ving the cubic equation 

In this section I want to illustrate how the straight lines (2) can help us solve a cubic 
equation 
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w3 + aw2 + bw + c = 0, 
by graphical means. Our first observation is that by defining z = w - � we have 

z3 + pz + q  = 0. (4) 

Notice the z2 term is missing. The equation (4) is known as the reduced cubic and it 
is the first step in the method of finding the general formula for the roots of the cubic, 
which [ 4] develops in full detail .  

We shall divide by z3 and then define p = x and q = y .  This gives us the equation 

X y 
- + - = - 1 .  
z2 z3 

For each value of z this gives us a straight line. Furthermore, for each point on this 
straight line the equation (4) holds . If we think of the plane as the (p,  q) space of all 
cubic equations (4), then points on these straight lines are solutions of the equation 
(4) . Hence, to solve a particular equation (4) we look to see which line(s), if any, pass 
through the point (p ,  q ) .  

-10-9 - 8 -7 - 6 - 5  - 4  

z = - 2  500 
z = - I  

0 

z = 1 
-500 

z = 2 

Figure 2 G raph ica l  sol ut ion to the c u b i c  equatio n :  rea l so l ut ions 

These lines have been plotted in FIGURE 2. Let us examine the line labeled z = 
-2. This certainly passes through the point p = 1 00, q = 208 . Hence, we know that 
the reduced cubic z3 + 1 OOz + 208 = 0 has a real root z = -2. Furthermore, from 
FIGURE 2 it appears that every point in the (p,  q) plane has at least one line through 
it, so every reduced cubic has at least one real root. To the left of the figure it appears 
that we have a region in which three lines always pass through a given point (p ,  q ) .  
Hence, here we always have three real roots for ( p ,  q)  i n  this region. 

The boundary of the region in which the cubic has three real roots is given by the 
equation 

which is another example of an implicit function. 
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Visua l iz ing imp l ic it  fu nctions 
One clear advantage of the contemporary function-as-function-machine approach is  
the ease with which such functions can be visualised. You can simply plot the graph, 
or have a machine approximate this for you. Functions defined implicitly by equations 
are hard to vizualise, at least initially. 

The following is a key observation when trying to sketch the graph of an expres
sion such as p(x, y) = 0. We begin by factoring p(x, y) over the real numbers. The 
expression is satisfied if any of the factors equal zero. Hence, we plot the graphs of 
each of the factors separately, and then combine them by superposition. The graph of 
p(x, y) = 0 is the superposition of the graphs of its factors. For example, the graph of 
the expression x2 = y2, or rather (x - y )(x + y) = 0, is the superposition of the two 
lines y = x and y = -x. 

Irreducible expressions, such as ( 1), have their own particular fo rms, something 
which [3] examines at length. We know this, from familiarity, to be a circle of radius 
1, centered at the origin. Familiarity with the other second order curves, that is to say 
conic sections, is something which comes with regular use. Your might like to discover 
why adding x2y2 to the right hand side of ( 1) might be described as "squaring the 
circle ". 

Computer algebra systems, or other technology, can help here, although you should 
beware that many CAS 's fail to plot simple implicit functions by failing to factor the 
expressions and act on this simple observation. For example, (x -2)2 = 0 fails to 
change sign for any x and y, and as a result an embarrassing number of mainstream 
CAS 's fail to plot this convincingly as the line x = 2. 

L inkages 

To illustrate somewhat more substantially the contemporary importance of implicit 
functions, we shall examine Watt's linkage, and four-bar linkages in general. Watt's 
linkage is shown in FIGURE 1. This consists of three movable bars, fixed to a base 
which constitutes a fourth bar. We are interested in the path of the pen, fixed to the 
middle bar, over all physically realistic positions of the linkage. You can see this path 
in the figure. 

The original purpose was to constrain the movement of a piston in the cylinder of 
a steam engines to move in an approximately straight line. Other four-bar linkages 
which were proposed for this purpose are shown in FIGURE 3. In the linkage to the 
left, the pen is on an extension of the middle link. In the linkage to the right, the pen is 
connected to the middle linkage, but is offset from the linkage itself, and this represents 

Figure 3 Other variations of the four-bar lin kage 
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Figure 4 A schematic of general four-bar linkages 

the most general situation. For more details of the history of the applications of this 
problem see [1] .  

From our point of view, all these will be treated in an identical way, as  shown in 
FIGURE 4. From this sketch, we are most interested in the locus of P, for all positions 
of the linkage. It is very worthwhile making physical models of these linkages, either 
from commercially available model kits or from materials you have on hand. Alter
natively you might like to implement these on a dynamic geometry package, such as 
GeoGebra (http : I /wwv . geogebra . at/). 

We shall take a more algebraic approach. We first notice that the distance between 
(x� > y1 ) and (x2 , y2) is fixed, at r1 say. Hence by the Pythagorean Theorem we have 

(XI - X2)2 + (yl - Y2)2 = r� . 

Indeed, to describe the whole linkage three more applications of the Pythagorean The
orem provide us with the following equations. 

(x2 - x3 )2 + (Y2 - Y3)2 = ri , 

(x3 - x4)2 + (y3 - Y4)2 = r; , 

(x4 - XJ )2 + (y4 - YI )2 = rJ _ 

Now, to describe the position of P = (xo , Yo) ,  relative to (x2 , Y2) and (x3 , y3) we need 
two further applications 

(x2 - xo)2 + (Y2 - Yo)2 = rf , 

(x3 - xo)2 + (y3 - Yo)2 = rl . 
Since we fix both ends of the linkage, we specify (x1 , yJ ) and (x4 , y4) ,  hence defining 
r4 and making one equation redundant. The task is to solve the system consisting of 
the remaining five equations. By "solve", we mean to specify the lengths of the links 
r1 , . . •  , r6 , and then to eliminate (x2 , y2) and (x3 , y3) to leave a single equation in only 
(xo . Yo) as the solution. 

This looks hopeless, but in fact it can be done with computer algebra in a straight
forward way using a concept known as Grabner bases. If you have a computer algebra 
system, such as Maple, Mathematica, Maxima or some other CAS, you will probably 
already have the software necessary to do this.  

For reference, if you have Maple 9.5, then the commands look something like this. 

> restart : with (Groebner) : with ( Ore_algebra) : 
> P l : = (x 1 -x2 ) - 2+ (y1-y2 ) - 2-r 1 - 2 ; 
> P2 : = (x2-x3) - 2+ (y2-y3 ) - 2-r2 - 2 ; 
> P3 : = (x3-x4) - 2+ (y3-y4) - 2-r3 - 2 ; 
> P4 : = (x4-x 1 ) - 2+ (y4-y1 ) - 2 -r4- 2 ; 
> P5 : = (x0-x2) - 2+ (y0-y2) - 2-r5 - 2 ;  
> P6 : = (x0-x3) - 2+ (y0-y3 ) - 2-r6 - 2 ; 
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Notice that we are using an expression (x1 - x2)2 + (y1 - y2) 2 - r� instead of an 
equation. This is really only an input syntax issue, and from this point onwards it 
is implied that such an expression represents an equation with right hand side zero. 

Next to examine in more detail a specific example we assign some lengths to these 
expressions. 

> y 1 : =0 ;  y4 : =0 ;  x 1 : =-5 ;  x4 : =5 ;  
> r 1 : =5 ;  r2 : =2 ;  r3 : =5 ;  
> r5 : = 1 ;  r6 : = 1 ;  
> S : =  [P 1 , P2 , P3 , P5 , P6] ; 

Notice that we have not included the redundant equation P4 in the list S, which is the 
resulting system of expressions representing our equations. Next the CAS computes 
the "Grabner basis" for this system, and then we remove any expressions which have 
any of the variables Xz , yz , X3 , or Y3 ·  

> LinkageGB : =gbas i s ( S , lexdeg ( [x2 , y2 , x3 , y3] , [xO , yO] ) ) : 
> Linkage : =op ( remove (has , LinkageGB , {x2 , y2 , x3 , y3 } ) ) :  
> f actor ( L inkage ) ; 

The result of this calculation, which took approximately six minutes to complete, is 
the expression 

(Yo6 + 2 yo4 - 99 Yo2 + 3 xo2Yo4 - 96 xo2Yo2 

+ 2401 xo2 + 3 x04y02 - 98 x04 + x06) 2 • 

In terms of the solution to the original system, this reduces to 

Yo6 + 2 Yo4 - 99 Yo2 + 3 xo2Yo4 - 96 xo2Yo2 + 240 1 xo2 

+ 3 xo4Yo2 - 98 xo4 + xo6 = 0. 

(5) 

(6) 

While we have not been able to find y0 in terms of an explicit expression in x0 , even 
finding this implicit function is quite an achievement. In fact, it is hopeless to suppose 
that the figure of eight curve shown in FIGURE 1 could result in a single-valued y0 = 
f(xo) . 

At this point you may be feeling some disquiet that I am not going to explain exactly 
what a Grabner basis is or exactly what you have done with it. That is your task to in
vestigate using the many available references. A good place to start is the "help" files 
on your computer algebra system. For example, in Maple type help ( Grobner )  ; .  
What I do hope to convince you of is that these (relatively) new computational tech
niques are particularly useful by applying them to a classical problem which does not 
appear to be solvable by traditional means, such as those of [6] . Indeed, so useful are 
they for solving apparently hopeless systems, such as that above, that I confidently 
predict that the implicit function itself will become much more important and widely 
used. 

In fact, we can do rather a lot more with these techniques .  In particular, rather than 
specifying the end points and linkage lengths at the outset, we shall keep these vari
ables in the system of equations . Now we shall solve the same system, and eliminate 
(x2 , y2) and (x3 , y3 ) ,  finding a single implicit equation for (x0 , y0) ,  in terms of the end 
points and linkage lengths. 

This appears to be an even more hopeless a task, since we have five nonlinear equa
tions with four variables to eliminate and a further nine parameters which will be left. 
And yet it can be done. Specifying only that y1 = 0, so that one end of the linkage 
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i s  effectively anchored on the x-axis, Maple i s  (eventually) able to find the required 
equation. The restriction y1 = 0 is not necessary, but it does make the computations 
finish in a sensible amount of time. Unfortunately even then, this is rather too long to 
print here, having some 27255 terms in the equation. 

Having obtained this equation we can use it to investigate the general behavior of 
four-bar linkages in which one end is anchored to the x-axis .  A first experiment is 
suggested by FIGURE 1 .  Notice that the end points of the linkage can be moved to 
various positions along the x-axis .  While these have been labeled from 0 upwards on 
the diagram, it makes sense for us to have 

to obtain symmetry, and then as before take 

Doing this we obtain, as a polynomial in r, the following. 

Not surprisingly, by substituting r = 5 into this equation we recover (6) . 
FIGURE 5 illustrates the locus of the center point in the middle arm of Watt linkages, 

for various values of r. When r = 0 both long arms are fixed at the origin, and we have 
the circle Y5 + x5 = 24. The figure eight shape shown in the model of FIGURE l is 
clearly reproduced for r = 5 in FIGURE 5 ,  and the algebraic expression for this curve 
is given in (6). 

Recall that Watt's  original intention was to draw an approximate straight line. For 
r = 2, FIGURE 5 appears to show a much longer, approximately straight section in 
the curve. Perhaps moving the fixed points to r = 2, rather than r = 5, gives a bet
ter straight line? Indeed it does, and this configuration was actually proposed for this 
purpose by the Russian mathematician Pafnuty Chebyshev ( 1 82 1- 1894), who was fas
cinated by linkages.  We shall refer to this as "Chebyshev 's  approximate straight line" 
and you are encouraged to actually make this for yourself, or at the very least sketch 
the linkage. If you do this you will see how the two disconnected parts of the curve 
correspond to physical configurations of the linkage. 

Notice also that the curve shown to the left of FIGURE 3 looks very similar indeed 
to that for Watt's linkage with r = 2. And yet Watt's linkage has quite a different form 
than this model, in particular the pen on Watt's  linkage lies mid-way along the center 
link. This suggests another line of inquiry: can we find more than one linkage which 
generates a particular curve? 

To do this let us start with our general expression for the four-bar linkage. Into 
this we substitute the values for Chebyshev 's  approximate straight line to obtain the 
equation 

(Yo6 - 40 Yo 4 + 384 Yo2 + 3 xo2Yo 4 - 96 xo2Yo2 + 784 xo2 

+ 3 Xo 4yo2 - 56 x0 4 + x06) 2 = 0. (7) 

This is plotted in FIGURE 5, and labeled r = 2. Now we compare the coefficients of 
(7) with those of the 27255 terms in the general equation. Each comparison provides 
an equation in the unknown positions of the end points, and also the lengths of the 
links. Again we have a large number of non-linear equations in nine unknowns. How 
can we possibly hope to solve these, and hence find alternative four-bar linkages which 
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r = 0.5 r = 1 

r = 1 . 1 ,  1 .7 r = 2 r = 2 . 5 ,  3 ,  3 . 5 ,  3 .57 

r = 4 r = 5 r = 5 .25 , 5 . 5 ,  5 .75 

Figure 5 The l ocus  of Watt's l i n kage for var ious  separat ions  r 
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produce Chebyshev's approximate straight line? This is simple; we apply the Grobner 
basis technique again to solve this system of equations, just as we did before. 

One result is 

and 

5 
rs = 2 '  

A model of this linkage i s  shown to the left of FIGURE 3 .  Having found this result 
by algebraic techniques, it is  relatively straightforward to find a simple and purely 
geometrical proof that the curves generated are identical by drawing the two alternative 
linkages on the same diagram. If you use dynamical geometry then the proof "jumps 
out" as the linkages move in unison. 

What about the most general case? If we take a linkage, such as that shown to the 
right of FIGURE 3 ,  then it is always possible to find exactly two others which generate 
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the same curve. This i s  the famous triple generation theorem, and a simple purely 
geometric proof is given in, for example, [7] . 

What these algebraic expressions, and their associated graphs, lack is the movement 
obtained by the linkages. For example, if the point (x2 , y2) is rotated at a constant 
speed, then how does the velocity of P change? These linkages have a satisfying aes
thetic quality to them, which can only be experienced by making the linkages. This can 
be either with a physical model of your own, or virtually in dynamic geometry. For a 
particularly intriguing example, try r1 = r3 = 5, r2 = 6, the point P the midpoint of 
the bar, that is to say r5 = r6 = 3 ,  and with (x 1 , y1 ) = (-2 , 0) , and (x1 , y1 ) = (2, 0) . 
Many other configurations are possible. 

The four-bar linkage is perhaps the simplest of mechanisms : a three bar linkage 
forms a triangle and hence is rigid, and any more bars give the potential for greater 
degrees of freedom. The techniques I have sketched above are becoming widely used 
for the design of mechanisms in general, and the design of robots in particular. They 
allow the user to accurately model the movement of complex joints, both in the plane 
and in three dimensions. They allow a designer to search for alternative configurations 
of links with the same, or similar, paths. Furthermore, there are many other situations 
in mathematics which generate systems of polynomial equations. Where these need to 
be manipulated, the Grabner basis technique is invaluable. All that can be hoped for as 
an outcome in general is an implicit function. As a result of this,  I predict that implicit 
functions will become much more important in the near future. 
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Each July, the eyes of baseball fans across the country tum to Major League Base
ball 's All-Star Game, gathering the best and most popular players from baseball 's two 
leagues to play against each other in a single game. In most sports, the All-Star Game 
is an exhibition played purely for entertainment. Since 2003 , the baseball All-Star 
Game has actually 'counted' , because the winning league gets home field advantage 
in the World Series. Just one year before this rule went into effect, there was no win
ner in the All-Star Game, as both teams ran out of pitchers in the 1 1 th inning and the 
game had to be stopped at that point. Under the new rules, the All-Star Game must be 
played until there is a winner, no matter how long it takes, so the managers need to 
consider the possibility of a long extra inning game. This should lead the managers to 
ask themselves what the probability is that the game will last 1 2  innings .  What about 
20 innings? Longer? 

In this paper, we address these questions and several other questions related to the 
game of baseball. Our methods use a variation on the well-studied geometric distribu
tion called the quasigeometric distribution. We begin by reviewing some of the litera
ture on applications of mathematics to baseball. In the second section we will define 
the quasigeometric distribution and examine several of its properties. The final two 
sections examine the applications of this distribution to models of scoring patterns in 
baseball games and, more specifically, the length of extra inning games. 

1 . Sabermetr ics 

While professional baseball has been played for more than a century, it has only been 
in the last few decades that people have applied mathematical tools to analyze the 
game. Bill James coined the term 'Sabermetrics' to describe the analysis of baseball 
through objective evidence, and in particular the use of baseball statistics. The word 
Sabermetrics comes from the acronym SABR, which stands for the Society for Amer
ican Baseball Research [12]. 

Before SABR was ever organized, and before sabermetrics was a word, the influ
ence of statistics over the strategy used by a manager in professional baseball was min
imal . No manager would have ever thought of having charts on what each batter had 
done against each pitcher in the league. Now things are different. Since the publication 
of Michael Lewis 's  book Moneyball in 2003 [10], even most casual baseball fans have 
become familiar with Sabermetric statistics such as OPS ("on-base plus slugging", 
which many people feel is a better measure of offensive skill than the traditional statis
tics such as batting average or RBis) and Win Shares (a statistic developed by Bill 
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James in [8] which attempts to measure the all-around contributions of any player), 
and there has been a proliferation of books and websites for the more dedicated fans 
to pursue these interests . 

Sabermetrics has had a profound influence not just in the living room, but also in 
the clubhouse as it has begun to affect the strategy of the game. In the last decade, 
Sabermetrics devotees such as Billy Beane, Theo Epstein, Paul DePodesta, and Bill 
James himself have all worked in the front offices of Major League baseball teams, 
and these approaches are often given some of the credit for the Red Sox winning the 
2004 World Series [6]. 

Sabermetricians attempt to use statistical analysis to answer all sorts of questions 
about the game of baseball :  whether teams should intentionally walk Barry Bonds, 
whether Derek Jeter deserves his Gold Glove, which players are overpaid (or under
paid), when closing pitchers should be brought into the game, and whether or not 
batting order matters are just some of the questions that have had many words writ
ten about them. For readers interested in these questions, websites such as Baseball 
Prospectus [2] and journals such as By The Numbers [5] are a great place to start read
ing. Alan Schwarz's  book The Numbers Game [13] provides an excellent historical 
perspective, and Albert and Bennett's book Curve Ball: Baseball, Statistics, and the 
Role of Chance in the Game [1] is a good introduction to some of the mathematical 
techniques involved. 

One recurring theme in the sabermetric literature is the question of how likely cer
tain records are to be broken and how unlikely these records were to begin with. For 
example, now that Barry Bonds has set the career homerun record, many people are 
curious whether we should expect to see any player pass Bonds in our lifetime. Sev
eral recent articles ([3], [4]) in The Baseball Research Journal have asked the question 
"How unlikely was Joe DiMaggio's 56 game hitting streak?" and have come to differ
ent answers depending on the methods they use to look at the question. This question 
is of the same flavor as the question we address in Section Four, as we use the math
ematical models developed to examine how likely a 20 inning game is to occur, and 
how unlikely the longest recorded game of 45 innings really was . 

2 .  D i str ibut ions 

Geometric distributions. To begin, let us recall what we mean by a distribution in 
the first place. 

DEFINITION 2 . 1 .  A probability distribution on the natural numbers is a function 
f : N0 ---+ [0 , 1 ] (where N0 denotes the nonnegative integers) such that I::o f(n) = 
1 .  The mean (or expected value) of a discrete distribution f is given by 1-t = L nf(n) 
and the variance is given by a2 = I:<n - �-t)2 f (n ) .  

DEFINITION 2 . 2 .  A geometric distribution i s  a distribution such that for all n :=::: 1 ,  
f(n) = f (O)ln for some fixed 0 < l < 1 .  

We note that geometric distributions are the discrete version of the exponential de
cay functions which are found, for example, in half-life problems. In particular, if f is 
a geometric distribution, then we see that 

00 
1 = L f(n) 

n=O 
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= L j (O)£n 
n=O 

_ f (O) 
- 1 - £ ' 
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therefore f (0) = 1 - £ .  Thus, the entire distribution is determined by the value of £ .  
I t  i s  a straightforward computation to see that the mean of this distribution i s  J�e and 
the variance is 0 �e)z . 
Quasigeometric distributions. In this paper, we wish to discuss a variation of ge
ometric distributions which can reasonably be referred to as quasigeometric distribu
tions, as they behave very similarly to geometric distributions. These distributions are 
defined so that they are geometric other than at a starting point. In particular, we want 
there to be a common ratio between f (n) and f (n + 1 )  for all n 2: 1 but not (neces
sarily) the same ratio between f (O) and f( l ) .  To be explicit, we make the following 
definition: 

DEFINITION 2 . 3 .  A quasigeometric distribution is a distribution so that for all 
n 2: 2, f(n) = f ( 1 )dn- 1 for some 0 < d < 1 .  We call d the depreciation constant 
associated to the distribution. 

Just as geometric distributions are completely determined by the value of k, a quasi
geometric distribution is entirely determined by the values of d and f (O) (which we 
will often denote by a). In particular, a computation analogous to the one above shows 
that for n 2: 1 , f (n) = (1 - a) ( l  - d)dn- 1 • Given this,  it is possible to compute the 
mean and variance of the distribution as follows:  

00 

f.L = "L: nf (n) 
n=O 

00 
= L n ( 1  - a ) ( l  - d)dn- l 

n= l  
00 

= ( 1 - a) ( l - d) L ndn- 1 
n= l  

= ( 1 - a) ( l  - d) ( 1  - d) -2 

1 - a 
1 - d '  
00 

az = L n2 f (n) - f.Lz 
n=O 

00 
= L n2 ( 1  - a) ( l  - d)dn- l - f.L2 

n= l  
00 

= ( 1 - a) ( 1 - d) L n2dn- I - f.L2 
n= l  

( 1 )  
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( 1-a)( 1 +d) 
= ------

( 1 - d)2 

( 1-a)(a+d) = 
( 1- d)2 (2) 

Conversely, we note that a quasigeometric distribution is uniquely determined given 
J.t and a2 (although not all pairs (J.t , a2) determine a quasigeometric distribution). In 
particular, if s > l m  - m2 1 and we set 

m+s - m2 
a = -----

m +s +m2 
and d = 

mz + s - m 
' m2+s+m 

then the quasigeometric distribution given by a and d will have mean m and variance s .  
In statistics, this method of describing a distribution i s  called the method of moments. 

3 .  Baseball scoring patterns 
Runs scored per inning. It has been observed by several people (see [9] , [15], [16]) 
that the number of runs scored per inning by a given baseball team fits a quasige
ometric distribution (although they do not use this language). In TABLE 1, we have 
provided a table of the probabilities that a given number of runs is scored in an inning 
based on several different datasets and we see that the same general pattern persists. 
Woolner's data [16] separates teams by their strength, trying to see if teams that score 
an average of 3 .5  runs per game have different scoring patterns than those that score 
5.5 runs per game. The data compiled by Jarvis [9] separates teams by league to see 
how scoring patterns are affected by the different rules (designated hitter, etc.)  as well 
as the different cultures in the American League and the National League. 

TAB LE 1 :  Probability of scoring a given number of runs in an inning 

Dataset 
Woolner (all) 

Woolner (3.5 RPG) 
Woolner (5.5 RPG) 

0. 8 
0. 7 

& 0. 6 
� 0. 5 ,Q £ 0. 4 
a! i: 0. 3 
� 0. 2 
0 

Jarvis (AL) 
Jarvis (NL) 

� 
� 
\ 
\ 
\ 
_\ 
� 

0 runs 
0.730 
0.760 
0.679 
0.722 
0.73 1 

0. 1 
0 

� 
2 3 4 

1 
0. 148 
0. 140 
0. 16 1  
0. 1 5 1  
0. 150 

5 
Runs Scored in an Inning 

2 
0.068 
0.059 
0.079 
0.070 
0.067 

6 

3 4 5 
0.03 1 0.014 0.006 
0.024 0.0 1 1 0.004 
0.042 0.022 0.009 
0.032 0.014 0.006 
0.030 0.0 13  0.006 

- - - - - - Jarvis  AL 

··-·----- Jarvis NL 
- - - W oolner A l l  

- W oolner - 3 .5  RPG 
- W oolner - 5.5 RPG 

Figure 1 Runs scored per i nning 
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One notes from FIGURE 1 that, after an initial dropoff, the probability of scoring a 

given number of runs appears to fit a typical exponential curve. This is not a surprising 
result to baseball fans, because it is what one would intuitiviely expect if the only way 
that a runner reached base was by hitting a single: the first run would be more difficult 
to score as it requires multiple hits, but the probability that each additional run will 
score coincides with the probability that the batter gets a hit. 

Over each of these different data sets, one can compute the mean and standard 
deviation, and in tum compute the associated values of a and d that would define the 
appropriate quasigeometric distribution from the equations at the end of Section 2 .  

TAB L E  2 :  Computations  o f  a and d for datasets 

Dataset m s a d 

Woolner (all) 0.484 0.999 0.727 0.436 
Woolner (3.5 RPG) 0.408 0.896 0.772 0.444 
Woolner (5 .5  RPG) 0.627 1 . 173  0.642 0.429 

Jarvis (AL) 0.503 1 .024 0.7 1 5  0.435 
Jarvis (NL) 0.478 0.986 0.730 0.434 

We see from TABLE 2 that the value of the depreciation constant d does not change 
very much, even when we look across leagues or across varying strengths of teams . In 
fact, it does not change significantly even if we compare different eras. This observa
tion will be the key assumption of our model. For the duration of this paper, we will 
assume that scoring patterns in a given inning fit a quasigeometric distribution with a 
value of d = 0.436 for the depreciation constant as suggested by the full database in 
[16] . The value of a ,  on the other hand, does change significantly with the strength of 
a team. One way of interpreting this result is that the difference between the quality of 
teams is mainly in the probability that they score a single run in a given inning. Then, 
after the first batter crosses the plate, all teams are more or less equally successful at 
continuing the scoring drive. 

The work of Smith, featured in [ 14] , shows that an average major league team scores 
0.487 runs per inning. TABLE 3 computes the probability that a team which scores at 
this rate will score a given number of runs in an inning according to this quasi geometric 
model, and compares this with the probability observed in Woolner's  dataset. 

TAB L E  3 :  R u n s  per i n n i ng:  Quas igeometr i c  Model vs .  
Woo l ner's Data 

Number of Runs Predicted Prob. Observed Prob. 

0 0.725 0.730 
1 0. 1 5 5  0. 148 
2 0.068 0.068 
3 0.029 0.03 1 
4 0.0 1 3  0.0 1 4  
5 0.006 0.006 

Runs scored per game. Of course, as any baseball fan who has watched his team 
squander a lead can tell you, games are not won or lost by the number of runs scored 
in a given inning but instead by the number of runs scored in the full nine (or more) 
innings. So one would like a formula to determine the number of runs scored in a 
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nine-inning game. In order to do so, we first make the assumption that all innings 
are independent of one another. While this assumption is almost certain to be overly 
strong-teams are likely to face similar pitchers, weather, and park effects in consec
utive innings-it greatly simplifies the problem. Furthermore, we will see that it leads 
to mathematical results that match with actual game data. 

We denote the probability that a team scores n runs in nine innings as F(n) ,  and 
note that 

F(n) = L f(n J )f (n2) . . .  f (ns)f (ng) ,  

where the sum ranges over all 9-tuples of nonnegative integers (n 1 ,  • • •  , n9) which 
sum to n and f (n j ) is the probability that the team scores n j runs in inning j .  

If a team scores n runs i n  a game, then we know that the team must score i n  between 
one and min(n ,  9) different innings. Breaking up by these cases, we can compute 

min(n , 9) ( 9 
) 

F(n) = � 
i /(0)9-i (L f(n J ) . . .  f (n; ) ) ,  

where the interior sum i s  over all ordered i -tuples o f  positive integers summing to n .  
If we now invoke our assumption that the probability of scoring a given number of 
runs in an inning is quasigeometric (and independent of the inning), and therefore that 
f(O) = a  and f(n ; )  = ( 1 - a) ( l - d)dn ; - I for all n; ::=: 1 ,  we can calculate that 

In this formula, i represents the number of innings in which the team scores, a 
represents the probability that a team goes scoreless in a given inning, and d represents 
the depreciation constant, which we are assuming is equal to 0.436 for all teams. One 
way to view the G=D term is that it counts the number of ways to divide n runs among 
i innings. It will be more useful to us to translate this result in terms of the strength of 
a given team. To do this,  we note that Equation ( 1 )  showed that to model a team that 
scores an average of m runs per inning we should choose a = 1 - m ( 1 - d) . Doing 
so, we compute: 

where again d is the depreciation constant 0.436 and m represents the average number 
of runs per inning that a team scores. TABLE 4 computes F(n) for a team that scores 
the historical average of 0.487 runs per inning and compares these values with the 
empirical distribution of runs per game scored by National League teams between 
1 969 and 2002. 

One sees that this quasigeometric model appears to give a good approximation of 
reality, and therefore we might want to see how this type of model can be used to 
answer many different types of questions .  In the following section, we will look at the 
question of how often we should expect games to last 20 innings or more, but before 
moving on to that, we think it would be interesting to note that one could use this 
model to compute the odds that a team of a given strength would beat another team of 
a given strength. In particular, we note that the 2003 Atlanta Braves scored an average 
of 0.6 1 8  runs per inning, whereas the 2003 New York Mets scored an average of 0.443 
runs per inning. While this is clearly a lopsided matchup, one of the beautiful things 
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TAB L E  4: N u m ber of runs per game p red i cted by model vs .  
actua l  game data 

Number of Runs F (n)  = Prob in game % of NL Games 

0 0.055 0.062 
1 0. 1 07 0. 1 08 
2 0. 1 3 8  0. 1 39 
3 0. 1 45 0. 1 48 
4 0. 1 35 0. 1 34 
5 0. 1 14 0. 1 1 3 
6 0.09 1 0.088 
7 0.068 0.068 
8 0.046 0.049 
9 0.034 0.033 

1 0  0.023 0.023 

1 33 

about the game of baseball is that underdogs often win, and one wonders what the 
probability of the Mets winning a given game against the Braves would have been. 

One can use the quasigeometric model in order to approach this question. In par
ticular, we can use the strengths of each team to calculate F B (n ) (resp. F M (n) ), the 
probability that the Braves (resp. the Mets) will score n runs in nine innings. Given 
these functions and the assumption that their scoring is independent of each other, we 
can compute that there is roughly a 3 1 %  chance that the Mets will be ahead after nine 
innings, a 60% chance that the Braves will win, and a 9% chance that the game will go 
into extra innings. If one looks at what actually happened in the games played between 
the two teams in 2003 , we see that the Braves won 1 1  of the 1 9  (or 58%) of the games, 
with none going into extra innings.  These results correspond quite closely with the 
predictions of our model, given the small sample size involved. 

4 .  Extra i nn i ng games 

One of the things about baseball that its fans love the most, and its detractors like 
the least, is the fact that it is free of the artificial boundaries of time within which 
the clock confines other sports. This freedom from time constraints helps to shape the 
unique charm that is an evening at the ballpark, for fans never know when they may 
be the first to be enchanted until past sunrise by the first-ever wild ten-hour 46-inning 
slugfest. 

This idea brings us back to the question posed in the introduction: what is the prob
ability that a given baseball game lasts twenty innings or more? Alternatively, there 
has only been one Major League Baseball game to last twenty-six innings in history, 
and one could ask if the mathematical models predict more or fewer than have actually 
occurred. 

To answer these questions, one must first consider what the probability is that a 
game goes into extra innings at all . In particular, this asks whether or not the two 
teams have scored the same number of runs after nine innings of play. To compute 
this,  we make the assumption that the scoring of the two teams is independent of one 
another, and thus that T, the probability that the game is tied after 9 innings, can be 
computed as 

00 
T = L FA (i ) FB (i )  

i =O 
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where FA (i ) and Fn (i ) are the probabilities that Team A and Team B score i runs in 
nine innings, the formula for which was given above. 

We note that the formula above tells us that if we assume both teams score the major 
league average of 0.487 runs per inning, then T = 0. 1 03, so that we would expect just 
over 1 0% of games to go into extra innings. In reality, 9.22%-18 ,440 of the 1 99,906 
major league games played between 1 87 1  and 2005-have gone into extra innings. 
The discrepancy between this number and what our model predicts likely arises from 
two facts. First, our model assumes that the teams are scoring independently of one 
another. In reality, this assumption is likely to be not quite true, as external factors 
(humidity, altitude, pitching, etc .)  may cause games to be either high or low scoring, 
and there may be a psychological factor that promotes teams to score more if the other 
team is a few runs ahead, or to stop trying once they are blowing out the other team. 

The other factor that we can think of is trickier to get a handle on. The above calcu
lation assumes that both teams are average, but in most games one team will be better 
than the other. For an extreme example, we look at the AL East in 2003 , where the 
Detroit Tigers scored an average of 0.405 runs per inning and the Boston Red Sox 
scored an average of 0 .659 runs per inning. This is the largest discrepancy between 
two teams in the same league in over 25 years. In this case, the formula predicts that 
only 8 .4% of games will go into extra innings. While this specific example is an ex
treme, it suggests that when two teams have differing abilities to score runs, we should 
expect fewer extra inning games even if the overall average number of runs scored is 
held constant. This expectation is confirmed by the data in TABLE 5, where the rows 
and columns represent the strengths of the two teams playing, and T is the probability 
that they will be tied after nine innings, according to our model. 

Given that a large number of games are played between teams with widely differing 
abilities to score runs, this would suggest that our model will predict a larger number 
of extra inning games than actually occur. 

After the ninth inning, the game will conclude at the end of the first inning after 
which the score is not tied. Therefore, if we let k be the probability that the two teams 
score the same number of runs in a given inning, then the probability that a game is still 
tied after n innings is T kn-9 and for n > 9 the probability that it ends after n innings 
is Tkn-IO ( l - k) . 

We note that we are making several assumptions here. First, we are assuming that 
there is no effective difference between the tenth inning and any later inning as far 
as offensive production is concerned. We also assume that, at least as far as extra 
innings go, if k is the probability that the two teams score the same number of runs in 
a given inning then the probability that they score the same number of runs in each of 

TAB L E  5 :  Probab i l i ty of a t ie game between two teams of 
var ious  strengths 

1 1 0.405 1 0.437 1 0.487 1 o.537 1 o.6 1 7  1 o.659 

0.405 0. 1 148 0. 1 1 1 9 0. 1 065 0. 1 006 0.0903 0.0848 

0.437 0. 1 1 1 9 0. 1 097 0. 1 056 0. 1 007 0.09 1 8  0.0869 

0.487 0. 1 065 0. 1 056 0. 1 033 0. 1 000 0.0932 0.0892 

0.537 0. 1 006 0. 1 007 0. 1 000 0.0982 0.0936 0.0905 

0.6 1 7  0.0903 0.09 1 8  0.0932 0.0936 0.092 1 0.0904 

0.659 0.0848 0.0869 0.0892 0.0905 0.0904 0.0896 
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n consecutive innings is kn . We note that our intuition suggests that due to different 
strategies in the late parts of the game, as well as fatigue amongst the players, that 
the scoring distribution might be different as a game progresses, but the data seems to 
suggest that this difference is negligible. For details, see [14] . 

In order to proceed, it will now suffice to figure out what value k should have. Our 
first attempt to do so was to use an empirical number coming from the data itself, as 
detailed in [ 11 ] .  In this paper, we will use the quasigeometric model of scoring which 
we have developed in order to construct a theoretical value of k. In particular, if we let a = fA (0) and b = f8 (0) be the respective probabilities of each team going scoreless 
in an inning, we can compute: 

00 
k = L fA (i )fs (i )  

i =O 
00 = ab + L fA (i )fs (i )  

i = i  
00 = ab + "L(l - a) ( l - dA )d�� I ( l - b) ( l - ds )dk� ' 

i = i  

If  we continue with our assumption that dA = d8 = 0.436, and we let rn A  (resp. 
rn 8 )  be the average number of runs per inning scored by team A (resp. team B), then 
this simplifies to give us 

k = 1 - 0.564rnA - 0.564rn 8 + 0.4423rnArn 8 .  

We are now ready to see the fruits of our labor. Let us first look at the case where 
both of our teams score the major league average number of runs, which means rnA = 
rn 8 = 0.487. Then it follows that T = 0. 1 03 and that k = 0.55588 .  In particular, the 
probability of a game lasting n innings is (0. 1 03) (0.4442) (0 .5558)n� 10 for all n 2: 10 .  
The chart below calculates this probability for games of  varying lengths.  We have also 
included the actual number of major league ballgames from 1 87 1  through 2005 that 
have lasted that long, as well as the number of games that our model predicts . 

Comparing the model to the past . . .  and to the future. So how "rare" are ex
tremely long marathon baseball games? The second author has built a database, dis
cussed in detail in [11 ] ,  of baseball games lasting 20 innings or more. Among these 
are included the Brooklyn at Boston 26-inning major league record game in 1 920, the 
Rochester at Pawtucket 33-inning minor league game in 1 98 1 ,  and the longest known 
ballgame: a 45-inning amateur game in Mito, Japan in 1 983 .  Our theoretical model 
predicts the 26-inning major league record game is not as rare as empirical data would 
indicate, but the 33-inning minor league record game and 45-inning amateur record 
game are significantly more rare than empirical data would indicate. 

In the previous section we saw that there is approximately a 0 .00029 probability 
that any given game lasts 20 or more innings .  Assuming that the probability of any 
two games lasting this long is independent of one another we can compute that the 
probability that out of any collection of x games at least one of them lasts 20 or more 
innings is 1 - ( 1  - 0.00029Y . There are 2340 major league games played each year 
and therefore we should expect a 50% chance to experience a major league game of 
20 or more innings in any given season. Similarly, our model predicts that there will 



1 3 6  MAT H E MATICS MAGAZI N E  

TAB L E  6 :  N u m ber of games of a given length pred icted vs. 
actua l  n u m ber 

# Innings Prob in given game Actual MLB Expected MLB 

:::: 9 0.8973 1 8 1 ,466 1 79,349.6 
10 0.04574 8 1 06 9 1 42.3 
1 1  0.02542 456 1  5080.9 
1 2  0.0 1 4 1 3  2549 2824.3 
13 0.007857 1 4 1 3  1 570.4 
1 4  0.004367 83 1 872.8 
15 0.002427 426 485 . 1  
1 6  0.00 1 349 259 269.6 
1 7  0.0007502 140 1 49.9 
1 8  0.0004 1 70 69 83 .3 
1 9  0.00023 1 8  40 45.9 
20 0.000 1 288 20 25 . 1  
2 1  7 . 1 63E-05 1 0  1 3 . 9  
22 3 .982E-05 8 7 .8  
23 2 .21 3E-05 2 4.3 
24 1 .230E-05 3 2.4 
25 6 .839E-06 2 1 .3 
26 3 .802E-06 1 0.74 
27 2 . 1 1 3E-06 0 0.4 1 
28 1 . 1 74E-06 0 0.23 
29 6.530E-07 0 0. 1 3  
30 3 .630E-07 0 0.07 1 

Total 1 .0 1 99,906 1 99,906 

be 0.939 major league games that would have lasted 27 or more innings by now. In 
fact, we have not yet had such a game in 1 35 years of major league play. These results 
indicate that the 26-inning game in Boston is not an outlier from what one would 
expect from our model. 

If we assume that the scoring patterns in minor league games are similar to those 
in major league games (an assumption for which there is some evidence) , and in par
ticular that scoring is quasigeometric with the same values of a and d, then we should 
expect 6.68 minor league games to have gone 27 or more innings.  In fact, we have had 
6 such games. If we look further we see that the model predicts that we will have had 
only 0.087 minor league games which lasted 33 innings.  In fact, we have had one such 
game. 

Furthermore, there is a 99 .3% chance we will have a minor league marathon of 20 
or more innings in any given season, a 0. 1 3 %  chance we will have a minor league 
game of 34 or more innings in any given season, a 1 .32% chance of seeing a minor 
league game of 34 innings or more in any given decade, and a 9.4% chance of seeing 
a minor league game of 34 innings or more in a lifetime of 75 years . 

Our model allows us to estimate the probability of games lasting a certain number of 
innings or longer. This is an alternative method, and perhaps a more easily understood 
way to express how unlikely are marathons of a certain length. We will now use this 
approach to compare relative probabilities of breaking the current records for major 
league and minor league games .  

Assuming that major league baseball continues to have 30 teams play a 1 62-game 
season, there is a 50% chance we will see a major league game go 27 innings or more 
in the next 60 years . There is a 95% chance we will see a major league game go 27 
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innings or more in the next 260 seasons. So the 85-year old 26-inning major league 
record, while rare, is not so rare that we should assume it will stand for another ninety 
seasons.  

As far as minor league games go, if we assume that there continue to be 1 3 ,7 14  
minor league games played per year, then there is a 50% chance we  will see a minor 
league game go 34 innings or longer in the next 565 years . There is a 95% chance we 
will see a minor league game go 34 innings or more in the next 2,445 years. So the 
24-year old 33-inning minor league record may be very rare, and although it could be 
broken at any time, we should not expect to see it broken anytime soon. 

It is interesting to note that, despite several assumptions that seem like they are not 
entirely accurate, this model does a good job of predicting the number of marathon 
games.  This gives us hope that the quasigeometric model of baseball scoring can be 
used to answer a variety of questions about the game of baseball, and that it will be a 
useful tool in the growing research in Sabermetrics. 
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An optimization problem that appears as an exercise in most modern calculus text
books (Larson [3] and Stewart [5] for example) is the "crease length problem": 

One corner of a rectangular piece of paper with dimensions a x b (where a and 
b are given with 0 < a :S b) is folded to a point on the long side of the paper 
(the side of length b) and the fold is then flattened to form a crease. What is the 
minimum possible length of such a crease and to what point on the long side of 
the paper must the corner be folded in order to achieve this minimum? 

Although not always stated as such, the problem that the textbooks authors actually 
intend for their readers to solve is a more restricted version of the problem stated 
above. Upon consulting the solutions manuals that accompany many of the textbooks, 
we find that the solutions to the crease length problem that are provided only take into 
account those paper foldings that do not produce a flap that protrudes over one of the 
edges of the paper. However, as we can convince ourselves by grabbing a piece of 
paper and doing some folding experiments, some of the possible folds (as described in 
the problem above) do produce protruding flaps. Specifically, referring to FIGURE I ,  
we can perform a Case 1 fold which produces a flap that protrudes over the short edge 
of the paper, a Case 2 fold which has no protrusion, or a Case 3 fold which produces a 
flap that protrudes over the long edge of the paper. In addition, there are two "critical" 
folds, illustrated in FIGURE 2, that separate Case 1 from Case 2 and Case 2 from 
Case 3 ,  and there are also two other critical folds (not illustrated)-folding the lower 

1 3 8 

Figure 1 Th ree poss i b l e  fo lds  
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Case 2-3 
Figure 2 Crit ica l  cases 

left corner onto the lower right corner (thus folding the paper in half) and folding the 
lower left corner onto the upper right corner (which can be viewed as an extreme case 
of Case 3). In [1 ] ,  Haga considers a much wider array of possibilities for making a 
single fold of a rectangular sheet of paper but the focus is on studying the areas and 
ratios of side lengths of the polygons that are formed by such folds rather than on 
determining optimal crease lengths.  

In this note, we provide a solution of the general crease length problem in which 
all possible foldings of a corner to the opposite edge (as described above) are taken 
into account. One of our findings will be that the minimum crease length is never 
produced by a Case 2 fold (no matter the dimensions of the paper) and hence that the 
general crease length problem always yields a different minimum than the constrained 
problem that is treated in the textbooks . Our more interesting discovery, however, will 
be a criterion that determines which foldings must be performed in order to achieve 
the minimum (and maximum) crease lengths.  This criterion, which does not manifest 
itself when only the constrained problem is considered, is a condition relating the 
paper dimensions to the Golden Ratio, which is the number ¢ = ( 1 + ,J5) /2.  This 
number is one of the "special" constants of mathematics (like rr and e) that seems 
to show up frequently, often when least expected, in investigations of many different 
phenomena (geometric and otherwise) . For those who would like to become better 
acquainted with the Golden Ratio, we recommend the book of Huntley [2] and the 
article of Markowsky [4] . 

Supposing our paper to have dimensions a x b where 0 < a ::=: b, we can view the 
crease length as a function of y, where y is the distance from the lower right corner of 
the paper to the point on the right edge of the paper to which the lower left corner has 
been folded. (Refer to FIGURE 1 .) Our goal is to determine the absolute minimum and 
maximum values of the crease length and the values of y at which these extrema occur 
as y ranges from 0 to b. In order to construct the function that gives the length of this 
crease, we will find it convenient to first consider a slightly different folding problem 
in which the paper to be folded has no top or right boundaries . 

The crease function for infinite paper 

If  we begin with an infinite piece of paper or "infinite open rectangle" R = (0 ,  oo) x 
(0, oo) and fold the point (0, 0) (which is the lower left corner of the rectangle) onto an 
arbitrary point (x , y) E R, then the fold cannot protrude over any of the boundaries of 
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M(O, m )  

P(x, y ) 

Figure 3 Fo l d i ng i nfi n ite paper 

the original rectangle and we obtain a situation as depicted in FIGURE 3. By referring 
to this figure, the crease length I M N I can be determined as a function of x and y .  

Since I N  P I  = I O N / ,  w e  see that (x - n)2 + y2 = n2 and hence that 

xz + yz 
n = ---'--

2x 

Likewise, the equality of I M P  I and I 0 M I implies that 

( 1 )  

(2) 

Then, by the Pythagorean Theorem, we find that the square of the crease length (for 
convenience we will always square the crease length) is given by the function 

Before moving on to examine creases of finite paper, we pause to make an obser
vation that might be of interest to students and teachers of multivariable calculus . A 
major topic in multivariable calculus is the study of indeterminate form limits of func
tions of two variables. Many of the examples and exercises through which students 
learn about this topic involve rational functions (ratios of polynomials in x and y ) .  
However, examples of these types of limit problems for which physical or  geometric 
intuition can be brought to bear seem to be rare. The function F defined in (3) does 
provide such an example though. Specifically, let us consider the problem of evaluating 
lim(x , y )--+ (0,0) F(x ,  y) . 

The standard method of evaluating this limit is to let (x , y) approach (0, 0) along 
various curves (such as y = x ,  y = x2 , y = x3) and to observe that each curve 
of approach yields a different limit (0, 1 /4,  oo), thus allowing us to conclude that 
lim(x , y J--+ (O, OJ F(x ,  y) does not exist. However, our intuitive understanding of why this 
limit does not exist is greatly enhanced by referring to FIGURE 3 in which F(x ,  y) is 
the square of the length of the crease M N. In particular, it is easy to visualize that if 
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we let the point P (x , y) approach 0 (0, 0) along the line y = x ,  then the crease length 
approaches 0. On the other hand, we observe that within any prescribed distance of 
0 we can find points P (x , y) that yield arbitrarily large crease lengths (obtained by 
choosing P (x ,  y) close enough to the boundary of the paper) . This visual reasoning 
provides us with a geometry-based understanding of why the limit in question does 
not exist and also suggests that polar coordinates should be useful for the purpose 
of obtaining a more detailed mathematical description of the behavior of F. Indeed, 
by letting x = r cos(8) and y = r sin( e) ,  we see that the level curve F(x ,  y) = K2 
(corresponding to a given crease length K > 0) is r = K sin(28 ) ,  0 < e < rr /2.  The 
fact that each of these level curves (for each K > 0) lies in the open first quadrant and 
intersects every neighborhood of (0, 0) shows that lim<x . y)---> (O,o) F (x ,  y) does not exist 
and, furthermore, shows that F assumes every positive value in every neighborhood 
of (0, 0) . 

The crease function for finite paper 

In order to derive the crease function for a finite piece of paper of dimensions a x b 
where 0 < a � b, we position the lower left corner of our paper at the point (0, 0) and 
the lower right corner at the point (a , 0) . The function that we want to derive is 

L (y) = square of the crease length when 0 (0, 0) is folded onto P (a ,  y) 

with domain 0 � y � b. 
Since the finite rectangle (0 ,  a) x (0 ,  b) is  a subset of the infinite rectangle (0, oo) x 

(0, oo ) , we will be able to make use of the infinite paper crease function, F,  in deriving 
L .  In fact, the work has already been done for a Case 2 fold (see FIGURE 1 )  since this 
type of fold produces a crease that has the same length as the crease that would be 
formed in folding an infinite piece of paper. Thus, for a Case 2 fold, we have by (3)  
that 

(a2 + y2) 3 
L (y) = F(a ,  y) = 

4 2 2 a y 

The derivation of L for Cases 1 and 3 requires a little additional geometry. In these 
cases, we regard the finite paper as being superimposed on the infinite paper. Although 
only the finite paper is to be folded, we extend the lines formed by the fold onto the 
infinite paper as shown in FIGURES 4 and 5. It then follows from ( 1 )  and (2) that 

and 

For Case 1 (FIGURE 4), the crease length is I RN 1 .  The triangles MBR and MON are 
similar, so we obtain 

which gives us 

!MR! + !RN! !MR! 
! OM! 

=
IBM! 

!RNI = !MR!
! OB ! = !MN! ! OB ! 

IBM! ! OM! 
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M(O, m) 

0(0, 0) 
Figure 4 Case 1 fo l d  
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For Case 3 (FIGURE 5) ,  the crease length i s  IMRI and since 

which implies that 

we obtain 

IMRI + IRNI IRNI 
I ONI IANI 

IMRI = IRNI
I OA I = IMNI

I OA I 
IANI I ONI 

' 

B(O, b) r-----------, 

Figure 5 Case 3 fo l d  
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By comparing FIGURES 2, 4, and 5 ,  we observe that the condition that corresponds 

to the critical Case 1-2 is m = b which is equivalent to y = b - ,Jb2 - a2 and that 
the condition that corresponds to the critical Case 2-3 is n = a  which is equivalent to 
y = a .  The crease function for an a x b piece of paper is thus the piecewise-defined 
function 

L (y)  = 
(a2 + y2)3 

4a2y2 

a2 
- (a2 + y2) 
y2 

if b - ,Jb2 - a2 < y < a 

if a :S y :S b  

It can readily be seen that L is increasing on the interval (0 , b - ,Jb2 - a2) and 
decreasing on the interval (a , b) .  On the middle interval, (b - ,Jb2 - a2 , a ) ,  since 

we observe that y = ,Jla /2 is a critical point of L that corresponds to a local minimum 
value of L if and only if ,Jlaj2 E (b - ,Jb2 - a2 , a) . While the relation ,Jlaj2 < a  
is certainly always true, the relation b - ,Jb2 - a2 < ,Jlaj2 is true (as the reader can 
check) if and only if b2 1 a2 > 9/8.  In all of the textbook exercises that we have seen, the 
paper dimensions are given to be such that b2 ja2 > 9/8 and, since only Case 2 folds 
are addressed in these exercises, the local minimum value L ( ,Jla /2) is regarded as 
the absolute minimum value and hence as the "right answer" for the minimum crease 
length. However, in what follows we will see that this is in fact never the absolute 
minimum in the more general problem (no matter the values of a and b) . 

The go l den ratio makes the ca l l  

In order to economize on notation, we introduce a new parameter q = bja (with the 
assumption that 0 < a :S b implying that q 2:: 1 )  and we also give names to the critical 
points of L :  Yo = 0, y1 = b - ,Jb2 - a2 , Y2 = ,Jlaj2, Y3 = a , and Y4 = b .  Even 
though y2 is not a critical point unless q2 > 9/8,  it will not be necessary to treat this 
case separately in what follows .  

We have determined that the candidates for the absolute minimum value of L are 

L (yo) = b2 = q2a2 

27 2 L (yz) = 
1 6

a 

and that the candidates for the absolute maximum value of L are 

2b3 y ( ) L (yi ) = � = 2q3 q - ;qz=-T a2 

L (y3 ) = 2a2 • 
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To see where the absolute extrema actually occur, we need to compare the values 
L (y0) ,  L (y2) and L (y4) and also compare the values L (y1 ) and L (y3 ) .  It is in doing 
this that we will see the Golden Ratio, 

¢ = 
1 + v's � 1 .6 I 8 ,  2 

make its appearance. The property of the Golden Ratio that will be used in our compar
isons is the property that it is the only positive real number that is exactly one greater 
than its reciprocal ; that is ,  ¢- 1 + I = ¢, or equivalently ¢2 - ¢ - 1 = 0. The other 
fact that will be used is the fact that ¢ < 27 j i 6. Our results are given in the following: 

PROPOSITION 1 .  Let q = bja and let ¢ denote the Golden Ratio. 

1 .  If q2 < ¢ ,  then the minimum possible crease length is achieved by folding the paper 
in half and the maximum is achieved by peiforming a Case 2-3 fold (FIGURE 2). 

2. If q2 > ¢, then the minimum possible crease length is achieved by folding the lower 
left corner of the paper to the upper right corner of the paper and the maximum is 
achieved by peiforming a Case 1-2 fold. 

3 .  The minimum possible crease length can be achieved with two distinct foldings if 
and only if q2 = ¢. (The same is true of the maximum possible crease length. ) 

Proqf. First we compare the values L (y0) ,  L (y2) ,  and L (y4) :  If q2 < ¢, then 

and 

1 27 2 2 
a2 (L (Y2) - L (yo))  = 

1 6  
- q > ¢ - q > 0 

1 I 2 I 2 (L (y4) - L (yo) )  = 2 + 1 - q > - + I - ¢ = 0; a q ¢ 

whereas if q2 > ¢, then 

and 

I 27 1 27 1 27 - (L (y2) - L (y4) )  = - - - - I  > - - - - 1 = - - ¢ > 0 
a2 1 6  q2 1 6  ¢ I 6  

1 2 1 I - (L (yo) - L (y4) )  = q - - - 1 > ¢ - - - I = 0. 
a2 q2 ¢ 

The above comparisons show that L achieves its absolute minimum value at y0 if 
q2 < ¢ and at y4 if q2 > ¢. If q2 = ¢, then L achieves its minimum at both y0 and y4 • 
In no case is the minimum achieved at y2 • 

We now compare the values L (y1 ) and L (y3 ) .  Since the quantity 

is positive if and only if 

which is true if and only if 
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and since 

we conclude that L (y1 ) > L (y3 ) if and only if q2 > ¢. Therefore L achieves its abso
lute maximum value at y1 if q2 > ¢ and at y3 if q2 < ¢. If q2 = ¢, then L achieves its 
maximum at both y1 and Y3 . • 

In order to illustrate the somewhat surprising nature of our results, let us compare 
the constructions of extreme crease lengths for 8 .5  x 1 1  paper and 8 .7 x 1 1  paper. 
Since these paper dimensions are not very different (probably not visible to the naked 
eye), intuition would lead us to believe that the extrema would be obtained by per
forming similar folds. However, for a = 8 .5  and b = 1 1  we have q2 � 1 .  675 > ¢ 
meaning that the minimum crease length is obtained by folding the lower left comer 
onto the upper right corner and the maximum crease length is obtained by performing 
a Case l -2 fold (FIGURE 2) ; whereas for a = 8 .7 and b = 1 1  we have q 2 � 1 . 599 < ¢ 
meaning that the minimum crease length is obtained by folding the paper in half and 
the maximum crease length is obtained by performing a Case 2-3 fold. A comparison 
of the crease functions, giving actual crease lengths -JL[Y}, for 8 .5  x 1 1  paper and 
8 .7 x 1 1  paper is shown in FIGURE 6. 

1 2 .2 JL(y) 
1 2 .0 

1 1 .8 

1 1 .6 

1 1 .4 
1 1 .2 

1 1 .0 

1 0.8 

1 0.6 

1 0.4 
1 0.2 

1 0.0 +-��-r-+-+�--�r-+-+-��-r-+-+�--�r-+-+-�� y 
0 

REFERENCES 

2 4 5 6 7 8 9 

Figure 6 Comparison of crease length fu nct ions  

1 0  1 1  

I .  Kazuo Haga, Fold paper and enjoy math: origamics, in Origami3 : Third International Meeting of Origami 

Science, Math, and Education, T. Hull (ed.) ,  A.K. Peters, Natick, MA, 2002, 307-328 .  

2 .  H. E. Huntley, The Divine Proportion (A Study in  Mathematical Beauty), Dover, New York, 1 970. 

3 .  Ron Larson, Robert P. Hostetler, and Bruce H.  Edwards, Calculus, 8th ed. , Houghton Mifflin, Boston, 2006. 

4. George Markowsky, Misconceptions about the golden ratio, College Math. J. 23( 1 )  ( 1 99 1 )  2- 19 .  

5 .  James Stewart, Calculus Concepts and Contexts, 3rd ed., Thomson Brooks/Cole, Belmont, CA,  2005 . 



1 46 

The offer 
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An Offer You Can 't Refuse 

R .  H I R S H O N  
Col lege of Staten I s l a n d  

Staten I s l and, NY 1 03 1 4  
rh i rshon@aol .com 

R .  D E  S I M O N E  
3 94 Fan n i ng Street 

Staten I s land, NY 1 03 1 4  
rdes i mone@ s i . rr.com 

My friend Bob, who is a gambling man, says to me: "Come on Ron, let's play a game. 
You can make some easy money. Here are the rules :  We will flip this unfair coin that 
I have that has a probability of falling heads which is .52, just a tiny bit more than � .  
Each time it falls heads, you will pay me $ 1 .  If it falls tails, I will pay you $ 1 .  Whoever 
runs out of money first will pay the other guy $500. But since I have a slightly better 
chance of winning on each flip, I have to do something extra for you. Here's what I 'm 
going to do for you. I will start with a meager bankroll of  $ 10. But Ron, because you 
are my dear friend, I 'm going to let you start with any bankroll you desire. You can 
start with a thousand dollars , or a million dollars or a billion dollars or if you wish you 
can start with T = $ 1 , 000, 000, 0001 ·000•000•000 . That's right, that's what I said, Ron, 
you can start with one billion raised to the one billionth power dollars. That's a big 
bankroll ! I 'm not sure how long it would take to write that number out, or how many 
miles it would stretch if we did. But I think a lot. And Ron, not to confuse the matter, 
let us say that our bankroll is really composed of worthless chips, so that you really 
don't  have to risk T at all (as if anyone had that amount of money) and the only money 
that is at stake for either one of us is the original $500 wager. And since your bankroll 
may be very large, we will need a really good computer to help us play the game. 
Fortunately, I have just such a computer that can handle these large bankrolls, and will 
simulate and play our game in a minute or two." (O.K for the fun and intrigue of the 
problem, let's make believe such a computer is just at our finger tips ! )  

Well, Bob has tempted me. I know he  is basically honest (not too dishonest), and I 
trust that he has described the rules accurately. But he is not above "conning" me in 
an honest way. O.K, to play it safe, since Bob told me that I can start with whatever 
I want, I am not going to start with T .  I am going to play it a lot safer and start with 
TT . That should be enough, I believe, to overpower Bob's  meager 10  chip bankroll . 
For even though Bob has a slight edge of winning on each individual flip of the coin, 
it is only necessary for me to win 10 more flips than Bob does to take the $500 prize. 
Would I be wrong to play Bob's  game? Before answering Ron's  question, reading the 
next two paragraphs may be in order. 

Some historica l remarks 

The game proposed in the preceding section and the problems engendered by it go by 
the name of Gambler's Ruin. Let players X and Y play the flipping game, starting with 
bankroll s of x ,  y, respectively and let p be the probability that X wins on a single flip 
and q = 1 - p be the probability that X loses on a single flip. Let L = L (x , y ,  p) be 
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the event that X goes broke before Y. Then we have: 

if p =I= q 

' f  I 
1 p = q = 2 
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( 1 )  

The above result i n  slightly different notation can be found in [6, p .  92] . (We will 
find the above notation useful in the sequel . )  The proof is a short argument using only 
elementary probability theory. Other proofs of ( I )  have used more sophisticated math
ematics [1 ] ,  [4] . There are interesting articles in [2] , [3] , and [5] explaining various 
generalizations of the problem and giving numerous references. The general form of 
the problem was solved by the mathematician James Bernoulli and published eight 
years after his death in 1 7 1 3  [6] . If one makes a quick search on the Internet and plugs 
Gambler's Ruin into a search, a wealth of material comes up including simulations 
for this problem and problems of this type. Evidently the problem has continued to 
fascinate for nearly 300 years. 

The only mathematical prerequisites for reading this paper are the first six weeks of 
an undergraduate course in probability and a solid understanding of the limit process 
discussed in a good undergraduate calculus course. 

The answer to Ron's question 

Ron should not play the game as described in the introduction. It might be surpris
ing, but no matter how large Ron's  bankroll, Ron's  probability of losing (going broke 
before Bob does) is more than . 55 .  And a "law of average" type of argument won' t  
explain a possible paradox. For example, i f  p = .52 were replaced by  p = . 5 1 73 
when x = 1 0, then Bob might be in trouble. (See The Turning Probability Theorem 
in the sequel.) In any case, if Ron played the game a thousand times, with p = .52, 
(don't  forget, we have a very speedy computer to help us) he could expect to win 
450 times and to lose about 550 times so that he could expect to lose approximately 
100($500) = $50, 000 or more ! Things can even get worse for Ron. Here are some 
facts : 

LEMMA . If Bob starts with a bankroll of$x and has probability p of winning on an 
individual flip of the coin and if q = 1 - p, then no matter what Ron 's initial bankroll 
is, Bob 's probability of winning a game (that is of Ron going broke, before Bob does) 
is always greater than Z = 1 - (q I pY. 

If p > q ,  and Ron's  initial bankroll y is kept constant, and p is kept constant, 
it is obvious that Bob's  chance of winning the match increases as x ---+ oo. But the 
Lemma above shows even more. Bob's  chance of winning approaches 1 uniformly, 
independently of y as x increases without bound. If p > q ,  the situation where x and 
p are held constant, and either y is unknown or is allowed to vary and increase without 
bound will be some of the more interesting cases to study. 

We will show how to prove the lemma in a small paragraph in the sequel. But first 
let us calculate a few values of Z for various x and p to get a feel for the above result. 
We tabulate the results below. The middle line of the table below is for x = 10 and the 
bottom line is for x = 20. 



1 48 MATH EMATICS MAGAZI N E  

p . 5 1  .5 1 75 .52 .53 .54 .55 .56 .57 .58 .59 

X =  JO z .3297 .5036 .5509 .699 .799 .866 .910 .940 .960 .974 

X =  20 z .5507 .7535 .798 .9 10  .960 .982 .992 .996 .998 .999 

We leave it to the reader to decide if Bob is a "con artist." The one good thing we can 
say about him is that at least he wasn't  too greedy and he did not propose to start with 
a bankroll of 20. But he may have been smart enough to know that a smaller bankroll 
for him might have (to use the vernacular) sucked Ron right into his trap. He would 
have even trapped Ron with x = 10  and p = . 5 1 75 ,  and perhaps these choices would 
have enticed Ron even more. So a new question that Ron might ask is :  If x and p are 
kept constant, can I know in advance, whether "very deep" pockets for me can trump 
a tiny edge for Bob? This time, the answer is yes ! 

The other side of the story: The turning points of the game 

In the sequel, we replace Bob and Ron with X and Y respectively, with starting 
bankrolls of x and y and with p being the probability of X winning on a single flip. 
The following result shows that in certain cases, it pays for player Y to be rich. Recall 
that we are concerned with the case that X has an edge so that p > 1 /2, x and p are 
held constant, and there are no restrictions on y .  

When big bucks rea l l y  count, the turning probabi lity theorem 

Given any positive integer x ,  there exists a corresponding probability P = P (x) such 
that I /2 < P < I and such that X's  fate in the game can change depending on whether 
his probability p of winning on a single flip during the game is less than P or bigger 
than P .  Namely, if I /2 < p < P, then Y's probability of winning the match will be 
greater than 1 /2 provided that Y starts with a sufficiently large bankroll. If P ::::= p < 1 ,  
then X's  probability of winning the match will always be greater than 1 /2 no matter 
how much Y starts with. The value of P (x)  is obtained easily by solving the equation 
1 - Z = 1 /2, or Z = I /2 for P .  In particular, 

1 
p (x) = -( 1-/-2)-:-I 1,---x -+-1 

, Q = I - P .  (2) 

We will prove the above theorem in the sequel, but it might be of interest to calculate 
approximately here a few values of P ,  which we do in the table below. It seems appro
priate to call P (x) the turning probability of the game for the bankroll x .  We observe 
that the turning probability is always irrational except for the case x = 1 .  The graph of 
P decreases from 2/3 to .5 as x increases and the graph becomes asymptotic to P = .5  
very quickly. 

X 1 3 5 10  1 5  20 

P = P (x) 2/3 .5575 .5346 .5 1 732 .5 1 1 6 .5087 

The turning probability may be viewed as keeping x constant in the problem and find
ing an optimal minimal "winning" probability P for player X for that x. For example, 
consider the following possible cases : 
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(a) x = 1 0, p = . 5 1 7, 
(b) X = 1 0, p = . 5 1 73 ,  
(c) x = 1 0, p = . 5 1 734. 
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Should we expect a significant difference between these cases? We think most of us 
wouldn't  or shouldn't .  But there is a huge difference especially as concerns the re
peated play of the game with stakes as in our original game between Ron and Bob. 
The critical P value which distinguishes the cases for x = 10 is approximately .5 1 732 .  
In  case (c), X's  probability of winning the match (Y going broke before X) is always 
greater than 1 /2 no matter what Y's initial bankroll is. That is "deep pockets" for Y do 
not help. However in the other two cases, if Y starts with a sufficiently large bankroll, 
his probability of winning the match will be greater than 1 /2 .  That is ,  "deep pockets" 
works for Y. 

The next result takes a slightly different point of view. It answers the following 
question: If p > 1 /2 is fixed and is given, and we have no prior knowledge of y, what 
is an "optimal minimal" bankroll x for player X for this p? We state below the theorem 
on the turning bankroll. Again, in the sequel, L = L (x , y, p) is the event that player 
X goes broke before player Y does when they start with respective bankrolls x, y, and 
p is the probability of X winning on a single flip. 

The turning bankro l l theorem 

Given any fixed p > 1 /2, there exists a bankroll x * such that for any bankroll x 2: x * , 
if X begins with x ,  then X's probability of winning the match (Y going broke before 
X) is always greater than 1 /2 no matter what bankroll y ,  Y starts with. In addition, 
if X begins with a bankroll x < x * , then for all sufficiently large bankrolls y for Y, 
X's probability of winning the match is less than 1 /2 .  We call x * the turning bankroll 
for the probability p. We can state the turning bankroll point explicitly. To do this ,  we 
first solve the equation Z = 1 /2 for x and obtain a solution ln 2/ ln(p I q ), .5 < p < 1 .  
Since this solution depends on p ,  we represent it in functional notation by x = a (p) . 
Then x * = I a (p) l is the smallest positive integer greater than or equal to a (p) . Below 
is a sample calculation of a (p) and x * for various p.  

p . 5 1 . 5 1 4  .5 1 6  .5 1 72 .5 1 74 .52 .53 .6666 2/3 .6667 

a (p) 1 7 .33 1 2.37 10.8 1 0.07 9.95 8.7 5 . 8  1 .0004 1 .9997 

x *  1 8  1 3  1 1  1 1  1 0  9 6 2 1 1 

The solutions a (p) above are approximated sufficiently to obtain x * . We see that x * 
will be 1 for p 2: 2/3 and x * will be greater than 1 otherwise. It seems natural to 
call p = 2/3 a turning point probability for the turning bankroll point x * = 1 .  (We 
will deal with this comment in greater detail in the next theorem.)  For the values of p 
which yield x * = 1 ,  the part of the turning bankroll theorem which deals with x < x * 
is vacuously true since we treat only positive integral bankrolls .  We point out again 
that from the Big Bucks Theorem both 

(a) x = 1 0, p = . 5 1 7  and 
(b) X =  1 0, p = . 5 1 72 

are losing strategies for X, but from the present result 

(at ) x = 1 1 , p = . 5 1 7  and 
(b J ) X =  1 1 , p = . 5 1 72 
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are both winning strategies for X .  The function x* i s  a step function and the next result 
describes the step function behavior of x* explicitly. 

The tu rning p robabi lity theorem for tu rning ban kro l ls  

Let j be a positive integer. Let, Pi be the solution p to the equation j = ln 21 ln(p lq) . 
Namely, Pi = h i l (h i + 1 ) ,  where hi = 42. Then a (pi ) = j and the Pi form a mono
tonically decreasing sequence of numbers less than one. The sequence decreases to 
1 12. For all p, 1 12 < p < 213,  if Pi+ I _:::: p < Pi , the turning bankroll x* of p is pre
cisely j + 1 .  If p � 213,  the turning bankroll for p is 1 .  To restate this in another way: 
The turning bankroll is a step function whose discontinuities are the probabilities pi . 

We give below approximations for the first ten pi . The table values are approxima
tions of the actual values except for PI which is precisely 213 .  

j 1 2 3 4 5 6 7 8 9 1 0  

Pi 213 .586 .558 .543 .535 .529 .525 .522 .5 1 9  .5 1 7  

For example, to determine the turning bankroll of . 5 3  from the above table, note that 
p6 < . 53  < p5 , so the turning bankroll x*  of .53 is 6. Note that in the turning bankroll 
theorem, we "plug" in p to obtain x * .  In the turning probability theorem for turning 
bankrolls,  we find the "probability intervals" on which x* takes a constant value. We 
will now prove the Turning Theorems. 

Proofs of the assertions. We first deal with the Lemma. In this entire discussion, as 
well in the one immediately below, x is fixed as X's initial bankroll .  We use ( 1 )  above 
to verify the validity of the first assertion. We can assume p > q or else the statement 
is a triviality. (And besides, we are concerned with the cases when X has an edge.) 
As y gets larger, X's chance of losing strictly increases . So if x stays constant, P (L) 
will be strictly less than the limit of the right hand side of ( 1 )  as y ---+ oo. If this is 
not clear, remember that in any particular case, P (L) is going to be equal to one of 
the terms in ( 1 )  for some fixed y ,  and that the limit of a strictly monotonic increasing 
sequence of numbers is strictly greater than any of the individual numbers . Now note 
that if we divide numerator and denominator of ( 1 )  by px+y , then the expression ( 1 )  
may be rewritten as ( q  I py · [ 1 - ( q  I p)Y ] I [ l - ( q  1 py+Y ] .  Clearly the second fraction 
approaches 1 as y ---+ oo so that ( 1 )  increases monotonically to (q 1 p y and P (L) < 
(q I pY so that 1 - P (L) > 1 - (q I pY , which is our assertion. 

The big bucks turning probability assertion. This is merely a matter of interpret
ing what we already have written above. We just have to note that we have actually 
shown above that as y ---+ oo, P (L) monotonically increases and approaches (q lpY .  
Now if we think of what all this means i n  the limiting process, we obtain the story of 
Big Bucks. But we will write a few details below to help clarify the assertion. Also re
call that x is fixed in this discussion. We will write L = L (y , p) to indicate the param
eters y and p involved. First note that for fixed y as p gets larger, X's chance of losing 
strictly decreases. Again, let P = P (x ) .  Note that L (y ,  PI ) < L (y ,  p2) if PI > P2 · 

Consequently if p � P,  then for any y ,  by the use of (2), L(y ,  p) _:::: L(y ,  P) < 
( Q I P Y = 1 12. Thus for p � P ,  the probability that X wins the match is greater than 
1 12 for all y .  

Now let u s  consider the situation when p < P .  Then L (y , P)  < L (y , p) . Now in 
this very last inequality, let y ---+ oo. We then conclude that for some large enough 
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value YJ ,  L (y J , p) :::: ( QI P Y  = 1 12.  But then for all y2 > Y1 . 1 12 ::::: L (y1 , p) < 
L (yz ,  p) . Rephrased, this says that for all y2 sufficiently large and all p < P ,  we have 
X' s chance of losing is larger than 1 12.  Thus for these y and p,  Y' s chance of winning 
is larger than 1 12. 

The turning bankroll assertion. Again this is a matter of interpreting the limit pro
cess used in obtaining Z values.  First suppose that x :::: x * .  Then x :::: a (p ) .  Hence 
1 12 = (q I p )a (p) :::: (q I p Y . This is the same as 1 - (q I p Y :::: 1 12 .  But the probability 
of X winning the match for any bankroll y is always strictly greater than 1 - ( q 1 p y .  
This gives the first part of the assertion. Now suppose x < x *  = la (p)l Since x is 
an integer, this means x < a (p) . Consequently, 1 12 = (q lp)a(p) < (q lpY .  Since 
P (L) � (q lpY as y � oo, we see P (L )  > 1 12 for all y sufficiently large. Hence 
for all y sufficiently large, X's  probability of winning the match is less than 1 12 .  

The turning probability theorem for turning bankrolls. First of  all, one can read
ily verify that the function a is a strictly decreasing function of p. To verify that x *  
takes the value j + 1 on  the interval [PHI ·  pj ) ,  suppose PHI ::=:: p < Pj · Apply a to 
this inequality to obtain a (p HI )  :::: a (p) > a (p j ) so that j + 1 :::: a (p) > j .  But then 
by definition, the value of x* at p must be j + 1 .  

Last remarks. In this paragraph we describe a combinatorial problem that we en
countered while thinking about Gambler's Ruin. Essentially, the problem arose when 
we attempted to write a power series expression for P (L) . The proofs of the assertions 
below will be submitted in the future in a separate manuscript. Let Ln be the event 
that the match comes to an end with X losing in exactly n flips. A major problem is to 
determine the number of ways in which Ln can happen. That first important observa
tion is that if X loses the match (goes broke) in exactly n flips and loses exactly l of 
the first n flips, and wins exactly w of the first n flips, then l + w = n and l - w = x ,  
s o  2l - x = n .  Thus x and n have the same parity. I n  other words, for any (x , y) ,  the 
events that have the subscripts n are either all even or all odd. The first subscript on 
an L symbol is x, since it takes at least x flips for X to lose the match. To illustrate, it 
might be helpful to look at a simple case, (x , y) = ( I ,  3) . In this situation, the game 
must end with a loss for X with one of the events Ln with n odd. Let's say we agree that 
X will win a flip if head comes up on the flip and will lose the flip if tails comes up. We 
calculate by hand the number of subevents in L 7 .  In considering any subevent in L 7 ,  
w e  must have exactly 4 tails and exactly 3 heads i n  the subsequence, and end with a T.  
S o  right away w e  have a simple upper bound (�) = 2 0  for the number o f  elements in 
L7 .  One can verify that there are exactly 4 subevents in L7 ,  namely, HTHTHTT, HHT
THTT, HTHHTTT, and HHTHTTT. For example, we can not place HTHTTHT in this  
list because in this situation X would already have lost the match on the fifth flip. We 
emphasize that in checking for the validity of a certain sequence as a possible subevent 
of Ln we must check the sequence to be certain that X has lost the match exactly on 
the nth flip and not lost the match before the nth flip and that Y has not lost the match 
before the nth flip. Without a good way to attack this question, the reader may be able 
to imagine how tedious such calculations can get. The question concerning the size 
of Ln is a completely combinatorial problem, depending only on x and y .  Using ( l ) , 
we have developed an algorithm such that for any x and y, we find a rational function 
g (u)  such that the coefficients of its Maclaurin series expansion yield the number of 
elements in Ln . We call this rational function the loss function of X with parameters 
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x ,  y . We refer to the coefficients i n  the Maclaurin series as the loss sequence. The table 
below gives some sample results . Taking (x , y) = (5 , 1 ) ,  the table shows that Ls ,  L7 , 

and L9 have 1 ,  4, and 1 3  elements, respectively. If we take (x , y) = (4, 2) , the table 
shows that L4 ,  L6 , and L 8 have 1 ,  4, and 1 3  elements, respectively. 

X y Loss Function g (u )  Loss Sequence-first ten terms 

1 2 1 / ( 1  - u)  1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  1 ,  1 

1 3 ( 1  - u ) / ( 1  - 2u) 1 ,  1 , 2 , 22 , 23 , 24 , 25 , 26 , 27 , 28 

1 4 ( 1  - 2u ) j ( l - 3u + u2 ) 1 ,  1 , 2 , 5 , 1 3 , 34, 89, 233 , 6 10 , 1 597 

5 1 1 / ( 1  - 4 u  + 3u2) 1 , 4 ,  1 3 , 40, 1 2 1 , 364, 1 093 , 3280, 984 1 , 29524 

4 2 1 / ( 1  - 4u + 3u2) 1 , 4 , 1 3 , 40, 1 2 1 , 364, 1 093 , 3280, 984 1 , 29524 

3 3 1 / ( 1  - 3u)  1 , 3 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 

We have been able to show that the radii of convergence r of the Maclaurin series of all 
loss functions obey 1 /4 ::::; r < 1 .  The case (x , y) = ( 1 ,  1 )  is an exceptional case, since 
in this case, we do not get an infinite sequence since the game then ends in one flip. For 
n > 1 ,  the pairs (x , y) = (n ,  1) and (x , y) = (n - 1 ,  2) yield the same loss function. 
Also, for any particular loss function, there can be only finitely many pairs (x , y) that 
have this same loss function. The loss sequence for (x , y) = ( 1 ,  4) yields the odd 
indexed Fibonacci numbers (plug Fibonacci numbers or Fibonacci polynomials into 
an internet search) . 

Acknowledgements. The authors would like to thank the referees, the editor, and Emeric Deutsch for valuable 

suggestions. 

REFEREN CES 

I .  W. Fel ler, A n  Introduction to Probability Theory and Its Applications, Vol. 1 ,  3rd ed., John Wiley, 1 968.  

2 .  J .  Bak,  The Recreational Gambler: Paying the Price for More Time at the Table, this MAGAZINE 80 (2007) 

1 83- 1 94. 

3 .  J .  Harper and K. Ross, Stopping Strategies and Gambler's Ruin, this MAGAZINE 78 (2005) 255-269. 

4. E. Parzen, Modern Probability Theory and Its Applications, Wiley Classics, 1 992. 

5 .  R. I .  Jewett and K. A. Ross, Random Walks on Z ,  College Math. J. 19 ( 1 988) 330-342. 

6. S. Ross, A First Course in Probability, 5th Edition, Prentice Hall, 1 997. 

Lazy Student Integrals 

A cha l lenging integra l 

Let a E lR and consider the problem of evaluating 

G R E G O R Y G A L P E R I N 
G R E G O R Y R O N S S E  

Eastern I l l i no is  U n ivers ity 
Char l eston,  I L  6 1 920 

gga l peri n @ e i u .edu 
gronsse@ei u .edu 



VOL .  8 1 , NO. 2 ,  A PR I L  2 008 1 53 
as a function of a .  As a first attempt, we might substitute x = tan 11 to obtain the 
integral 

[''12 cosa e de 
lo cosa e + sinQ' e

. ( 1 ) 

This seems no better than the original. As a second attempt, split the integral over 
intervals [0, 1 ]  and [ 1 ,  oo) . On the second interval substitute u = 1 1  x to obtain 

t dx t uadu I (a) = Jo ( 1  + xa) ( l  + x2) 
+ 

Jo ( 1  + ua ) ( l  + u2) . 
Replacing the dummy variable of integration u with x and combining the two integrals ,  
we obtain 

which is independent of a.  

I (a) = 
r
o
' 

dx 

Jn 1 + x 2 
rr 

4 ' 

Many people, at first glance, think we should obtain a decreasing function of a 
and find it surprising that I (a) is constant. It is a trick of the mind. Upon looking at 
an integral of a bounded function over [0, oo),  we tend to think of the behavior of 
the function for large values of x and ignore the behavior for 0 :::: x :::: 1 .  The natural 
symmetry of inversion between [0, 1 ] and [ 1 ,  oo) reveals that the integral over each of 
these two intervals must sum to a constant. 

Now, of course, the integral in equation ( I ) is the constant rr I 4, independent of a .  
I s  there symmetry here? 

Tale of the lazy student 

In first semester calculus class, students learn to evaluate definite integrals by finding 
anti derivatives .  In order to remind them that an integral is a limit of Riemann sums, it 
is wise for an instructor to ask them to evaluate an integral similar to 

! 3 sin x3dx 

-3 .JT+X4 + cos (2x) · 

The answer is, of course, 0. We are integrating an odd function over an interval which 
is symmetric about 0. The area above the x-axis is equal to the area below the x-axis. 

The lazy student, upon seeing such complicated integrals, has become conditioned 
to write down 0 immediately and get the right answer. He has noticed that such prob
lems always seem to have positive and negative portions that cancel each other. The 
instructor must grudgingly admire this valid insight, but he seeks to enforce more care
ful analysis by altering the problem. So he adds a constant to the integrand, but keeps 
it mysterious by combining the constant with the fraction to keep the previous denomi
nator but alter the numerator. Our lazy, but perceptive, student now notices a new rule. 
"Complicated integrals" can be evaluated by evaluating the integrand at 0 and then 
multiplying by the length of the interval. The exasperated instructor throws in another 
gimmick by translating the integral along the x-axis by translation to an interval [a , b] 
in order to disguise the symmetry. The "good students" are completely baffled and an
gry. However, our lazy, but ingenious, student rises to the occasion. He evaluates the 
integrand at the interval' s  midpoint and multiplying by the length of the interval. 
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The lazy student's  method will not, of course, work for all "complicated integrals". 
Nevertheless, the lazy student would consider the value of the integral in equation ( 1 )  
as obvious (provided this student was not too lazy in algebra and trig class) .  Another 
formula that is obvious to the lazy student is 

1 10 (3 + xv'7) dx 
---=------;= - 5 o 6 + xv'7 + ( 1 0 - x)v'7 - · (2) 

Let us endeavor to make these formulas obvious to the non lazy, by generalization 
and abstraction. 

Lazy student formu las 

Let f :  [0, a] ---+ lR be any continuous function. Substitute u = a  - x to obtain 

1a f (x)  dx = 1a f (a - u) d u .  

Geometrically, the substitution simply reflects the graph of f about the line x = aj2, 
which obviously leaves the area under the curve invariant. 

Now suppose that f satisfies the following symmetry condition, 

f (x)  + f (a - x) = 1 .  

Integrating, we obtain the lazy student formula 

r f (x)dx = � .  Jo 2 

This is tine, but how do we obtain functions f that satisfy this restrictive symmetry 
condition? Set 

f (x)  = 
g (x)  

, 
g (x )  + g (a - x)  

where /? is any continuous function on [0 ,  a ]  such that the denominator of  the above 
does not vanish. It is easily verified that f satisfies the symmetry condition. Further
more, any function f satisfying the symmetry condition has this form, just take g = f .  

Equation (2) is now obvious by  taking g (x)  = 3 + x v'7 and a =  1 0. 
As a special case, note that sin(x) = cos(n /2 - x ) ,  to obtain the lazy student for

mula: 

["12 j (cos x)dx 

lo f (sin x)  + f (cos x)  
Jr 

4 ' 

where f is any continuous function defined on [0, 1 ] ,  such that the denominator in the 
above i ntegrand does not vanish. This includes the integral in ( 1 )  as a special case. 

Reference 

James Stewart, Calculus, 5th ed. , Brooks/Cole-Thomson Learning, Belmont, CA, 2003 . 
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1791. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let ABC be a triangle with circumcenter 0 ,  perimeter P ,  and area K .  Prove that if 

BC 
p 

[O BC] 
K 

1 

3 ' 

then ABC is equilateral. (Here [X Y Z ] denotes the area of triangle X Y Z.)  
1792. Proposed by H. A. ShahAli, Tehran, Iran. 

Let N be a positive integer. Prove that there is a positive integer n such that n2 + 3 is 
divisible by at least N distinct primes.  

1793. Proposed by Gatz Trenkler, University of Dortmund, Dortmund, Germany 

Let A be an n x n matrix with complex entries such that A 2 = A * ,  where A* denotes 
the conjugate transpose of A .  Show that 

a. rank(A + A*)  = rank(A) 
b. In + A  is nonsingular. 

1794. Proposed by Dorin Marghidanu, Colegiul National "A. I. Cuza ", Corabia, Ro
mania 
Let x 1 ,  x2 , . . .  , Xn ::=:: e. Prove that 

xz +· . .  +xn xn - 1  +xn 
+ x2 

xz + · · · + xn_:'�- I  + Xn :::: X )  + 2X2 + · · · + (n - l )Xn- 1 + nXn .  

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a IbTEX file) to 

ehj ohnst@iastate . edu. All communications, written or electronic, should include on each page the reader's 

name, full address, and an e-mail address and/or FAX number. 
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1795. Proposed by Jeff Groah, Montgomery College, Conroe, TX. 
Find a function f : [0, 1 ]  ---+ [0, 1 ]  such that for each nontrivial interval I S:::: [0, 1 ] ,  
we have f (/) = [0, 1 ] .  

Q u i ck ies 
Answers to the Quickies are on page 1 6 1 .  
Q979. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

If f is a real-valued differentiable function on [0, 1 ] ,  then it is well known that f' 
satisfies the Intermediate Value Property on [0 , 1 ] .  In addition, it is easy to show that 
I f' I also satisfies the Intermediate Value Property on [0, 1 ] .  Let f : [0, 1 ]  ---+ JR3 be a 
differentiable vector valued function. Must it be true that I I f ' II satisfies the Intermediate 
Value Property on [0, 1 ] ?  

Q980. Proposed by Ovidiu Furdui, The University of Toledo, Toledo, OH. 

Find all integer solutions to the diophantine equation x3 + x2 + x + 1 = y3 . 

So l utions  
Deducing a limit April 2007 

1766. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

Let f be differentiable on (0, oo) and let w be a positive real number. Prove that if 
limx-+exo (f' (x) + wf(x)) = A, then limx---+ oo f(x) = Ajw. 

I .  Solution by Evangelos Mouroukos, Agrino, Greece. 
Because limx-+oo e"'x = oo, we may apply L'H6pital' s  rule [ 1 ]  to get 

f (x )e"'x 
lim f (x) = lim ---

x-+cx:> x�oo ewx 

. J ' (x )e"'x + wf(x)e"'x 1 ( , ) A = hm = - lim f (x) + wf(x) = - .  
X -+ 00  {J)CWX (J) X -+ 00  (J) 

I .  Rudin, Walter. Principles of Mathematical Analysis, 3rd Edition, 1 976, pg. I 09. 

II. Solution by Henry J. Ricardo, Medgar Evers College, CUNY, Brooklyn, NY. 
Given E > 0, there is a c > 0 such that 

I (e"'x (f(x) - �) ) ' \  = i e"'x (f' (x) + wf(x) - A) l :S wEewx for x 2: c. 

Therefore integrating on an interval [c ,  x ] we find 

from which 

/ (f(x) - �) - ew (c-x ) (J(c) - �) /  :S E ( 1 - ew (c-x)) . 
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It follows that 

l f (x) - � �  S ew(c-x) l f (e) - � �  + E ( 1 - ew (c-x ) ) , 

so I f  (x) - � I  can be made arbitrarily small by taking x sufficiently large. 

Also solved by Michel Bataille (France), Gerald E. Bilodeau, Robert Calcaterra, Adam Coffman, Apostolis 
Demis (Greece), David Doster, Robert L. Doucette, Jayanthi Ganapathy, Peter Gress is, Eugene A. Herman, Chris 
Hill, Enkel Hysnelaj (Australia), Geoffrey A. Kandall, Victor Y. Kutsenok, Elias Lampakis (Greece), Kee- Wai Lau 
(China), Jerry Metzger, Northwestern University Math Problem Solving Group, Paolo Peifertti (Italy), Albert 
Stadler (Switzerland), Marian Tetiva (Romania), Dave Trautman, Michael Vowe (Switzerland), and the proposer. 
There was one incorrect submission. 

An equilateral characterization April 2007 

1767. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let G be the centroid of !':,.ABC.  Prove that if L.BAC = 60° and L.BGC = 1 20° , 
then the triangle is equilateral 

Solution by Minh Can, Irvine Valley College, Irvine, CA. 
Let a =  BC,  b = CA,  e = AB ,  m = GB ,  and n = GC .  By the Law of Cosines 

a2 = b2 + e2 - be. Substituting this into Stewart's formula for the length of a median 
we find 

and, similarly, 

From [BAC] = 3 [BGC] with L.BAC = 60° and L.BGC = 1 20° , we find be = 3mn . 
Substituting the above expressions for m2 and n2 we find 

It follows that b = e, so triangle ABC is equilateral . 

Also solved by Herb Bailey, Michel Bataille (France), ]any C. Binz (Switzerland), Robert Calcaterra, Hojin 
Choi (Korea), John Christopher, Adam Coffman, Miguel Amengual Covas (Spain), Chip Curtis, Prithwijit De 
(Ireland), Jim Delany, Apostolis Demis (Greece), David Doster, Robert L. Doucette, Euler 's FOILers, Dmitry 
Fleischman, Michelle Ghrist, Michael Goldenberg and Mark Kaplan, G.R.A.20 Problem Solving Group (Italy), 
Peter Gressis, Jeff Groah, Chris Hill, Enkel Hysnelaj (Australia), Geoffrey A. Kandall, Victor Y. Kutsenok, Elias 
Lampakis (Greece), Kee- Wai Lau (China), Charles McCraken, Kim Mcinturff, Evangelos Mouroukos (Greece), 
Jose H. Nieto (Venezuela), Northwestern University Math Problem Solving Group, P8 lar Bear Problem Solvers, 
Jawed Sadek, H. A. ShahAli (Iran), Raul Simon (Chile), Seshadri Sivakumar, Skidmore College Problem Group, 
Earl A. Smith, Albert Stadler (Switzerland), H. T. Tang, Marian Tetiva (Romania), Michael Vowe (Switzerland), 
Paul Weisenhorn (Germany), Paul Zorn, and the proposer. There were two solutions with no name and one 
incorrect submission. 

Square partitions April 2007 

1768. Proposed by G.R.A.20 Problem Solving Group, Rome, Italy. 

For which positive integers n can the set { 1 , 2 ,  . . .  , 2n } be partitioned into n two 
element subsets so that the sum of the two numbers in each subset is a perfect square? 
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Solution by John Christopher, California State University Sacramento, Sacramento 
CA. 

Examining the set S = { 1 ,  2, . . .  , 2n } for each positive integer n ::: 30, we find that 
there is at least one partition of S into n two element subsets so that the sum of the two 
numbers in each subset is a perfect square as long as n is not one of the seven integers 
1 ,  2, 3 ,  5 ,  6, 10 ,  1 1 .  We show by induction that the set S will have a partition of the 
required type for all integers n � 3 1 .  

Assume a partition of the required type exists for n = 1 2 , 1 3 ,  . . .  , k - 1 ,  where 
k � 3 1 ,  and consider n = k. Find the unique positive integer t such that 

(2t + 1 )2 (2t + 3)2 ---- < 2k < -'------
2 2 

( 1 )  

and note t � 5 .  Let m = (2t + 1 ) 2 - 2k . We show that 24 < m < 2k . From ( 1 )  it 
follows that 

(2t + 3)2 (2t + 1 ) 2 
(2t + 1 ) 2 -

2 
< m < (2t + 1 )2 -

2 
, 

which leads to 2t2 - 2t - 7/2 < m < 2k . For t � 5 ,  24 < 2t2 - 2t - 7/2 which im
plies that 24 < m < 2k . 

Now write S = { 1 ,  2, 3 ,  . . .  , 2k} = X U Y,  where 

X = { 1 ,  2, . . .  , m - 1 }  and Y = {m ,  m + 1 ,  . . .  , 2k} .  

Because m - 1 i s  even and 1 2  ::: (m - 1 )/2 < k ,  we know from the inductions hy
pothesis that the set X can be partitioned into two element subsets such that the sum 
of the elements in each of the subsets is a square. The set Y can be expressed as 

Y = {m , 2k} U {m + 1 ,  2k - 1 }  U · . .  U {2t2 + 2t , 2t2 + 2t + 1 } , 

and the sum of the two elements in each of these subsets is (2t + 1 )2 . This completes 
the induction. 

Therefore the set { 1 ,  2 ,  . . .  , 2m } can be partitioned as desired for positive any in
teger m E {4, 7, 8, 9} U { 1 2 ,  1 3 ,  14 ,  . . .  } .  

Also solved by Dmitry Fleischman, Chris Hill, Peter Hohler (Switzerland), Enkel Hysnelaj (Australia), Eugen 
J. lonascu and Albert VanCleave, Jerry Metzger and Thomas Richards, Jose H. Nieto (Venezuela), Paul Weisen
horn (Germany), and the proposers. There were five incorrect submissions. 

Expansion coefficient 

1769. Proposed by Michel Bataille, Rouen, France. 

For positive integer n ,  let 

� (2n + 1) n-k k Pn (X ,  y) = � 2k 1 X (x + y) . 
k=O + 

Apri1 2007 

Find a closed form expression for the coefficient of xi yj when Pn is expanded. 

Solution by Brian Bradie, Christopher Newport University, Newport News, VA. 
First note that when Pn is expanded, each term is of degree n ;  therefore, the coeffi

cient of xi yj is zero unless i + j = n. Expanding (x + y)k using the binomial theorem, 
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we see 

2n + 1 n-k k k-j j 
n ( ) [ k ( ) J Pn (x , y) = {; 2k + 1 X f; j X y 

= � � [ ( ;� 1 � ) ( � ) xn-j yj J 
= 1; [� ( ;� 1 � ) ( � ) J xn-j yj 

_ f-, 4n-j ( 2n - j ) n-j j 
- L...t . X y . 

j=O } 

With i = n - j ,  it follows that the coefficient of xi yj is 

1 5 9 

Also solved by Michael S. Becker and Charles K. Cook, Robert Calcaterra, Chip Curtis, G.R.A.20 Problem 
Solving Group (Italy), Enkel Hysnelaj (Australia), Simone Lamont and Farley Mawyer, Jerry Metzger, Angel Plaza 
and Sergio Falc6n (Spain), Ossama A. Saleh and Terry J. Walters, Volkhard Schindler (Germany), Edward Schme
ichel, Nicholas C. Singer, Albert Stadler (Switzerland), Michael Vowe (Switzerland), Paul Weisenhorn (Germany), 
and the proposer. There was one incomplete submission. 

Limit of a recursive sequence April 2007 

1770. Proposed by Scott N. Armstrong, University of California, Berkeley, CA, and 
Christopher J. Hillar, Texas A&M University, College Station, TX. 

Let A. 1 , A.2 , • • .  , A.k be nonnegative real numbers summing to 1 ,  and let a 1 , a2 • • •  , ak 
be complex numbers . For n > k, define 

Prove that if there is a j ,  1 ::::; j ::::; n - 1 ,  such that A. j and A. j + 1 are both nonzero, then 
limn->oo an exists . In addition, determine the value of this limit. 

Solution by Eugene Herman, Grinnell College, Grinnell, /A. 
When k = 1 ,  we have an = an- i for all n > 1 ,  which implies that an = a 1 for all 

n and hence that a 1  is the limit. Now assume k � 2 and for n � k, let Vn denote the 
row vector (an+ i -k o . . .  , an- i •  an ) in Ck . Then the given recurrence relation can be 
expressed as a recurrence relation on the vectors v n with 

Vn = Vn- I S  for all n > k ,  ( 1 )  

where S is the k x k stochastic matrix whose last column is A.k o . . .  , A. 1  and whose j th 
column, 1 ::::; j ::::; k - 1 is the (j + 1 ) st column of the k x k identity matrix.  Thus, S 
has 1 as an eigenvalue, and all of its remaining eigenvalues are less than or equal to 1 
in absolute value. 

We now show that the eigenvalue 1 has algebraic multiplicity 1 and that none of the 
remaining eigenvalues have absolute value 1 .  The characteristic polynomial of S is 

k 
p (x ) = xk - L A.jxk-j 

j= i 
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Therefore 

k - 1  k - 1  k - 1  k - 1  
p' ( l ) = k - 2:)-j (k - j ) = k - k I>·j + L P·j > k - k L Aj � 0 .  

j= 1  j = 1  j= 1  j= 1  

Since p' ( 1 )  i= 0 ,  the eigenvalue 1 has algebraic multiplicity 1 .  I f  z i s  an eigenvalue of 
S with l z l  = 1 and z i= 1 ,  then p (z) = 0, and so 

1 = I l l = lt Aj Zk-j l :::: t Aj = 1 

Moreover, the above inequality is strict, because there are two consecutive terms 
Aj Zk-i and Aj+ 1 zk-j - l where both Aj and Aj+ J are nonzero. Since these consecutive 
terms (regarded as vectors in JR2) are not positive scalar multiples of one another, the 
length of their sum is strictly less than the sum of their lengths. Therefore z cannot be 
an eigenvalue of S.  

Given these facts about the eigenvalues of S,  i t  is well known that limn�oo sn exists . 
Let U denote this limit. Hence, by ( 1 ) ,  

Therefore 

lim Vn = lim vk sn-k = vk lim sn = vk U. n----+oo n----+oo n----+00 

lim an = vku where u is column k of U. n�oo (2) 

Furthermore, every column of U is  the same vector u, and u is the unique probability 
vector that is an eigenvector of S associated with the eigenvalue 1 .  The equation Su = 
u can be written as the system of equations 

We can easily solve this system to get u i ,  1 :::; j :::; k, in terms of uk : 

Uj = ( t A;) ub j = 1 ,  . . . , k .  
i=k+ l-j  

(3)  

Because u is a probability vector, 

1 1 
and hence Uk = --;-k--k;----- = --;-k--.- . 

Lj= l Li=k+ l -j A; Lj=l  ] Aj 

Therefore, by (2) and (3), we conclude that 

lim an = k L L A; a j . 
1 k ( k ) 

n�oo Lj=l  }Aj j= l  i=k+ l -j 

Note: The above proof is also valid when a 1 , • . .  , ak belong to a normed linear space 
V over JR. In this case, the vectors Vn belong to Vk in place of Ck . 

Editor 's Note: Michael Vowe noted that the problem appears in William Feller's An 
introduction to Probability Theory and Its Applications, Vol.  1 ,  third edition, on page 
333 .  

Also solved by Robert Calcaterra, Dmitry Fleischman, Russell Jay Hendel, Enkel Hysnelaj (Australia), Mark 
Kaplan and Michael Goldenberg, Jerry Metzger, Nicholas C. Singer, Albert Stadler (Switzerland), Paul Weisen
horn (Gennany), and the proposer. There was one incorrect submission. 
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Answers 
Solutions to the Quickies from page 1 56. 
A979. The answer is no. As an example, consider the function f defined by 

t = O 

O < t :S l . 

Then 

{ 
(0, 0, 1 )  

f ' (t)  = (zt cos (�) + sin (�) , 2t sin (�) - cos (�) , 1) 
It follows that 

l l f ' (t) l l  = 
{ 1 t = 0 

J 4t2 + 2 0 < t ::::; 1 .  

t = O  

O < t :S l . 
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Because l l f ' (O) I I  = 1 and l l f ' (t) l l  > .J2 for 0 < t ::::; 1 ,  we see that l l f ' l l  does not satisfy 
the Intermediate Value Theorem on [0, 1 ] .  

A980. The solutions are (x ,  y) = (0, 1 )  and (x , y) = (- 1 ,  0) . To prove this first 
observe that 

The left inequality is immediate, while the right inequality is equivalent to x (x + 1 )  2:: 
0, which is true for all integers x .  Thus, (x - 1 ) 3 < y3 ::::; (x + 1 ) 3 , and it follows that 
y = x or y = x + 1 .  The solutions are then obtained by straight forward calculations. 
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Brams, Steven J . ,  The Presidential Election Game, 2nd ed., A K Peters, 2008; xxiii + 1 94 pp, 
$29 (P) . ISBN 978- 1 -5688 1 -348-6. Mathematics and Democracy: Designing Better Voting and 
Fair-Division Procedures, Princeton University Press, 2008; xvi + 373 pp, $27.95.  ISBN 978-
0-69 1 - 1 3321-8.  

By the time you read this, most of the presidential caucuses and primaries will be over and the 
the major parties' candidates may have been determined well in advance of their conventions. 
In the first book, Brams applies decision theory and game theory to analyze campaigns and 
elections, devoting the first chapter to primaries, followed by chapters on party conventions, the 
general election, coalition politics, the White House tapes game of 1 974, and approval voting. 
The chapters are reproduced from the first edition in 1 978,  so all examples are from an era be
fore current students were born; but a new introduction summarizes more recent developments, 
and all the ideas are once again very timely to a new generation galvanized by politics (as I 
write just after "Super Tuesday," Phil Straffin's bandwagon curve on pp. 1 1 4-1 1 7 seems quite 
relevant to the race between Clinton and Obama) . In the new book, Brams treats the mathemat
ics of voting (he espouses approval voting) and fair division (such as cake-cutting or allocation 
of cabinet ministries) .  The heightened consciousness of college students about issues of democ
racy in the U.S .  and elsewhere (e.g. ,  Iraq) makes this a good time to teach a special course on 
the underlying mathematics, and this book would be a good source for such a course. 

Dudley, Underwood (ed.) ,  Is Mathematics Inevitable ? A Miscellany, MAA, 2008; x + 325 pp, 
$56.95 ($45 .50 to MAA members) .  ISBN 978-0-88385-566-9. 

The provocative title is from an included 1 95 8  essay by Nathan Altshiller Court. Don't  expect 
a negative answer from this volume ! It is a collection of essays without a real theme except 
that editor Dudley-known for his good taste and his own provocative writing-feels that these 
essays deserve preservation and presentation to a new generation. They range from a defense 
before Parliament of quadratic equations to why students (correctly) perceive classes as larger 
than average, from how driver's license numbers are assigned to why mathematics is applica
ble to the physical world. Authors include Jean Dieudonne, Richard Guy, Morris Kline, Paul 
Halmos, and Lewis Carroll. Of course, there is mathematical humor and a couple of pieces by 
mathematical cranks. Each piece has a prelude and a postlude by Dudley, together with brief 
biographical information about the author. 

Maor, Eli, The Pythagorean Theorem: A 4, 000- Year History, Princeton University Press, 2007 ; 
xvi + 259 pp, $24.95.  ISBN 978-0-69 1 - 1 2526-8 .  

Most adults remember little of high school geometry, but they remember the Pythagorean theo
rem. This book goes beyond the theorem and its proofs to set it beautifully in the context of its 
time and subsequent history, up through its connection to relativity and its association with the 
Fermat's  Last Theorem. Author Maor writes conversationally but does not shy away from using 
equations . So this book is not for the average adult; it does, however, belong in your public 
library and your local high school library (have you checked the mathematics section of either 
of those lately?). 
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Weinstein, Lawrence, and John A. Adams, Guesstimation: Solving the World's Problems on the 
Back of a Cocktail Napkin, Princeton University Press, 2008;  xv + 301  pp, $ 1 9. 95 (P). ISBN 
97 8-0-69 1 - 1 2949-5 . 

How many airplane flights do Americans take in one year? How much farmland would the U.S .  
need to devote to  com to  power all its cars on  ethanol? How much would the ocean surface 
rise if the ice caps melted? These and other questions (some serious, some silly) are asked 
(with hints given) and answered in this book, which is devoted to cultivating the art of "back 
of the envelope" (or napkin) calculation. An introductory chapter explains scientific notation, 
how to convert units, and "back of the napkin" rule for significant digits (keep only one ! ) .  The 
questions are divided by topic (general, animals and people, transportation, energy and work, 
hydrocarbons and carbohydrates, the Earth, energy and the environment, the atmosphere, and 
risk), and a final chapter has 33 unanswered questions. Brief appendices give useful numbers 
and formulas, metric prefixes and abbreviations, and sample objects along the scales of length, 
area, density, and mass. Readers who enjoy this book may want to graduate to John Harte's 
Consider a Spherical Cow (University Science Books, 1 988) and Consider a Cylindrical Cow 
(200 1 )  (I am eagerly hoping for a successor Conical Cow book). 

Schiff, Joel L . ,  Cellular Automata: A Discrete View of the World, Wiley-Interscience, 2008; xvi 
+ 252 pp, $ 1 05 .  ISBN 978-0-470- 1 6879-0. 

"I expect the children of 50 years from now will learn cellular automata before they learn alge
bra." Stephen Wolfram (writing in 2006) may yet tum out to be right, but alternatively he may 
instead have underestimated conservatism in education. After all, 25 years ago some thought 
that students would long since have been learning discrete mathematics in college before they 
learned calculus .  This book tries to move toward his goal, though it is not for the pre-algebra 
set. It treats dynamical systems, one- and two-dimensional cellular automata, applications (bi
ology, sociology, game theory, physical phenomena), and complexity (including autonomous 
agents, such as honey bees and ants) .  The book is billed as a textbook, "hitting the highlights 
as the author sees them," and it covers a lot of territory briefly. It has a generous complement of 
images, but there are no exercises or suggested projects. 

Wainer, Howard, The most dangerous equation, American Scientist (May-June 2007) 249-256. 

We mathematicians are not accustomed to thinking of equations as dangerous. Statistician 
Wainer cites E = mc2 as an equation that is dangerous if you know it, but his concern here 
is equations that are dangerous if you don 't know them. The three examples he cites are Kel
ley's equation (you estimate best by regressing an observation toward the historic mean), the 
standard linear regression equation, and what he calls de Moivre 's equation. Only for the last 
does he give the equation itself: ax = a I Jn, the relation between standard error of the mean 
of a sample, the standard deviation of the population, and the size of the sample. Finding de 
Moivre 's equation more dangerous than the other two, Wainer cites five situations where its 
misuse have led to enormous losses and hardship. Those situations are the trial of the Pyx 
(quality control at the British mint over 600 years) ,  kidney-cancer rates (urban vs. rural) ,  the 
small-schools movement (does small produce better scores?), the safest cities (hint: they aren ' t  
large), and sex differences in academic test performance (males have greater variation). You' ll 
have to read the article to learn the details, but the fundamental root of the misuse is misunder
standing how variation changes with size. 

Stigler, Stephen M., Eight centuries of sampling inspection: The trial of the Pyx, Journal of the 
American Statistical Association 72 ( 1 977) 493-500. Isaac Newton as a probabilist, Statistical 
Science 2 1  (2006) (3) 400-403 . 

Wainer's article reviewed above criticizes the trial of the Pyx. Stigler's first article tells about 
it and mentions the involvement of Newton, Master of the Mint for 28 years . Stigler's second 
article demonstrates that Newton was acquainted with probability: Before his stint at the Mint, 
he was drawn into correspondence about the very same dice problem as Pascal had been 40 
years earlier. Newton had the right intuition and calculations but an incorrect general argument. 
Unfortunately, his experience at the Mint did not lead him to discover de Moivre's equation. 
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